茶树HD-Zip转录因子基因的克隆及其对非生物胁迫的响应分析

滕瑞敏,李辉,王文丽,沈威,汪迎,崔新,庄静*

南京农业大学园艺学院,茶叶科学研究所,南京210095

摘要:茶树作为一种叶用植物,具有重要的经济价值。非生物胁迫对茶树的生长发育过程和茶叶的生产影响很大。本研究 采用RT-PCR方法从茶树'龙井43' cDNA中克隆获得1个编码HD-Zip转录因子的基因*CsHB1*。序列分析显示,*CsHB1*基因 cDNA长为1 380 bp,编码459个氨基酸,含有典型的START结构域。进化分析显示,茶树CsHB1属于HD-Zip家族转录因子的 IV亚族。多序列对比发现,CsHB1与其他物种的HD-Zip类蛋白的氨基酸序列具有78.05%的相似性,如葡萄、烟草、芝麻 等。对CsHB1转录因子理化性质、亲/疏水性、无序化分析显示,CsHB1转录因子是疏水性蛋白且显偏碱性,不存在无序化 区域。空间结构分析显示,CsHB1有3个α-螺旋,多个β-折叠,且有START结构域。利用荧光定量PCR方法分析了*CsHB1*在 高温(38°C)、低温(4°C)、PEG干旱(200 g·L⁻¹)、NaCl (200 mmol·L⁻¹)处理1、4、8、12 h的表达情况。结果表明,*CsHB1*基 因在不同非生物胁迫处理下均能诱导表达,且表达差异性明显。

关键词:茶树; HD-Zip转录因子; 基因克隆; 非生物胁迫; 表达分析

高等植物中的转录因子能与一些受高低温、 干旱、盐胁迫等非生物逆境诱导基因上游的顺式 作用元件相结合,从而调控植物对非生物胁迫的 响应。HD-Zip (homeodomain-leucine zipper)属于 homeobox蛋白家族,是植物中一类重要的转录因 子,由同源异型结构域(homeodomain)和附加的亮 氨酸拉链结构域(leucine zipper)组成(Ariel等 2007)。在HD-Zip中,同源异型结构域由60个氨基 酸残基构成,主要与目标DNA特异性结合,且序列 高度保守;35到42个氨基酸组成亮氨酸拉链结构 域部分,主要介导蛋白二聚体构型的形成(Elhiti和 Stasolla 2009; Ariel等2007)。

转录因子在调控植物生长发育及逆境胁迫响 应中的研究越来越深入(陈晓丽等2016)。研究证 实,植物中HD-Zip转录因子可分为HD-Zip I、HD-Zip II、HD-Zip III和HD-Zip IV等4类(Elhiti和 Stasolla 2009)。HD-Zip I为保守的HD-Zip结构域, 其决定了特异的DNA结合域,主要响应外界信号, 如极端温度、干旱和渗透压等非生物胁迫,从而调 控植物生长以适应环境(Sessa等2005)。HD-Zip Ⅱ为 保守的N末端和CPSCE (Cys-Pro-Ser-Cys-Glu)结构 域,主要参与光应激反应和生长素信号转导(Ariel 等2007)。HD-Zip III有一个START (steroidogenic acute regulatory protein related lipid transfer)结构域 连着一个保守的SAD (START-adjacent domain)结 构域, 且具有MEKHLA (Met-Glu-Lys-His-Leu-Ala) 结构,参与调控植物生长发育,如分生组织形成、 侧生器官发生、生长素极性运输和维管系统发育

等(Prigge等2005)。HD-Zip IV相对HD-Zip III亚类 缺少了MEKHLA结构,主要参与根发育、植物细 胞分化、毛状体形成和花青素积累(Elhiti和Stasolla 2009; Ariel等2007)。目前,编码HD-Zip蛋白的基 因已经在很多植物中克隆并获得较为深入的研究, 包括拟南芥(Arabidopsis thaliana) (Sultan 2010)、 水稻(Oryza sative) (Nakashima等2009)、小麦(Triticeae asetivum) (Lopato等2006)、苜蓿(Medicago truncatula) (Ariel等2010)、向日葵(Helianthus annuus) (Cabello等2007; Dezar等2005)、番茄(Lycopersicon esculentum) (Ariel等2007)等植物。目前,茶树中HD-Zip家族转录因子基因的克隆与功能研究较少。

茶树[Camellia sinensis (L.) O. Kuntze]属于山 茶科山茶属植物, 是一种喜温畏寒的多年生常绿 木本植物, 起源于我国西南地区, 在我国栽培历史 已有上千年, 作为一种叶用植物, 茶叶中富含茶多 酚、氨基酸、维生素、有机酸、矿物质等次生代 谢成分, 是一种集营养和保健为一体的天然饮料 (宛晓春2003)。高温、低温、干旱和高盐等非生 物胁迫是导致植物生理缺水的主要环境因素(杨献 光等2006)。在茶树生长过程中, 这些非生物胁迫严 重影响着茶叶的产量和质量。虽然茶树已经开展 了AP2/ERF (Wu等2015a)、WRKY (Wu等2015b)、 NAC (Wang等2016)等非生物胁迫相关转录因子的

收稿	2017-05-27	修定	2017-09-0
収楇	2017-05-27	修正	2017-09-0

资助 国家自然科学基金(31570691)。

^{*} 通讯作者(E-mail: zhuangjing@njau.edu.cn)。

分析,但HD-Zip转录因子基因及抗逆分子机理方面仍然缺乏深刻的认识。

本研究从茶树'龙井43'中克隆得到茶树中编码HD-Zip转录因子的CsHB1基因,对该茶树CsHB1转录因子进行序列比对、理化性质、进化树、无序化、二级结构预测和三级结构等生物信息分析;为验证CsHB1基因在茶树对非生物胁迫的响应,通过荧光定量PCR方法,对茶树'龙井43'中CsHB1基因在高温(38°C)、低温(4°C)、干旱胁迫(PEG)、盐胁迫(NaCl)下的诱导表达进行了分析,以期为进一步深入研究茶树HD-Zip转录因子在茶树非生物胁迫调控中的作用提供借鉴。

材料与方法

1 试验材料与处理

供试材料为茶树'龙井43' [Camellia sinensis (L.) O. Kuntze cv. 'Longjing43']两年生扦插盆栽幼 苗,种植在南京农业大学茶叶科学研究所试验大 棚中。取生长健康的幼嫩叶片进行RNA的提取及 cDNA的合成。并以幼嫩叶片的cDNA作为克隆基 因的模板。

选取长势良好的'龙井43'两年生扦插幼苗,选 取健康植株进行4°C低温、38°C高温、干旱(200 g·L⁻¹ PEG)、高盐(200 mmol·L⁻¹ NaCl)胁迫处理,处 理时间分别为1、4、8和12 h,以未处理的茶树植 株为对照。分别在不同时间点采集不同处理的茶 树叶片,提取RNA进行反转录成cDNA,用于实时 定量的模板。

2 茶树CsHB1基因的克隆

根据Quick RNA Isolation Kit (北京华越洋生物科技有限公司)试剂盒提取茶树'龙井43'的总RNA,利用微量紫外检测仪NanoDrop测定RNA浓度,按照反转录试剂盒Prime Script RT Reagent Kit (大连TaKaRa公司)完成cDNA合成。基于本实验室茶树的转录组数据(Wu等2014),设计一对引物 (CsHB1-F: 5'-ATGCTCTCCTATCCTCATGGA-3'; CsHB1-R: 5'-CGCATTCACTCCGCCTACA-3')。PCR扩增体系为20 μ L: 7 μ L ddH₂O, 1 μ L模板, 10 μ L *Ex Taq* Mix,上下游引物各1 μ L。反应条件为: 95°C预变性5 min; 95°C变性30 s, 55°C退火30 s, 72°C延伸1 min, 共30个循环; 72°C延伸10 min。

PCR产物用12 g·L⁻¹琼脂糖凝胶电泳分离, 切取目 的胶块, 参照DNA回收试剂盒说明书将其回收纯 化, 连接至pMD19-T载体(大连TaKaRa公司), 转化 至大肠杆菌DH5α, 挑取阳性克隆菌液送至通用生 物系统(滁州)公司测序。

3 序列分析

利用NCBI网站(http://blast.ncbi.nlm.nih.gov/ Blast.cgi.)对获得的核苷酸和蛋白序列进行BLAST 比较搜索和保守域预测;使用DNAMAN 6.0软件 进行序列多重比对及亲水性和疏水性预测;理化 性质由序列处理在线工具包(SMS)(http://www. bio-soft.net/sms)和EXPASY(http://web.expasy.org/ protparam)等相关网站程序分析;利用MEGA6(Tamura等2013)软件构建分子系统发育进化树及其报 告图形的生成;蛋白质二级结构预测和无序化特 性分析分别在SOPMA网站(http://npsa-pbil.ibcp.ff/ cgi-bin/npsa)和FoldIndex(Prilusky等2005)网站中 完成;利用Swiss-Model(http://www.Swissmodel. expasy.org)构建蛋白质三级结构模型(Arnold等 2006)。荧光定量PCR的数据分析采用IBM SPSS Statistic20和Microsoft Excel 2010软件制作完成。

4 茶树CsHB1基因的表达分析

为了分析在高低温、高盐和干旱胁迫下'龙 井43'中*CsHB1*基因的表达情况,根据大连TaKaRa 公司的SYBR Premix *Ex Taq* Kit试剂盒说明书进行 荧光定量PCR操作。在Bio-CFX96 Real-time PCR System中完成荧光定量PCR。扩增程序为:95°C预 变性30 s; 95°C变性5 s, 60°C退火30 s, 72°C延伸10 min,共40个循环。选择茶树*GAPDH*作为内参基因 (刘圆等2016),与目标基因*CsHB1*一起扩增。表达 检测引物分别为CsGAPDH-JF:5'-TTGGCATCGTT-GAGGGTCT-3'; CsGAPDH-JR:5'-CAGTGGGAA-CACGGAAAGC-3'和CsHB1-JF:5'-AACAACAT-ACCAGCAGGAG-3'; CsHB1-JF:5'-GCAGCAC-TTAACACAATCC-3'。每个处理设置3个生物学重 复,采用2^{-ΔΔCr}方法进行结果分析(Pfaffl 2001)。

实验结果

1 茶树CsHB1基因的克隆

以茶树'龙井43'叶片的cDNA为模板, CsHB1-F 和CsHB1-R为引物, 通过PCR扩增得到约1 500 bp

的片段。序列测定与分析表明,茶树CsHB1基因长为1 380 bp,编码459个氨基酸。本文从茶树'龙井43'中克隆得到的CsHB1基因序列已登录GenBank,登录号为MF033534。

2 茶树CsHB1转录因子的进化分析

茶树CsHB1转录因子的进化分析参考Ariel等 (2007)的HD-Zip家族分类方法。在Plant Transcription Factor Database (http://planttfdb.cbi.pku.edu.cn)网站 上下载拟南芥的HD-Zip成员, 然后与茶树CsHB1 转录因子进行同源进化比对, 构建同源进化树。 结果(图1)表明, CsHB1在进化关系上属于HD-Zip 家族转录因子中的HD-Zip IV亚族。

3 茶树CsHB1转录因子氨基酸序列比对及理化性 质分析

茶树CsHB1保守域预测结果(图2-A)所示, CsHB1转录因子的结构域在1~215个氨基酸位点 之间,含有1个START结构域。将茶树CsHB1转录 因子与雷蒙德氏棉(Gossypium raimondii)、川桑 (Morus notabilis)、可可(Theobroma cacao)、木豆 (Cajanus cajan)、苹果(Malus domestica)、葡萄(Vitis vinifera)、牵牛花(Ipomoea nil)、桃(Prunus persica)、 甜橙(Citrus sinensis)、甜椒(Capsicum annuum)、 土瓶草(Cephalotus follicularis)、野生烟草(Nicotiana attenuata)、野生大豆(Glycine soja)、芝麻(Sesamum indicum)多个物种的HD-Zip转录因子的氨基酸序列 进行多重比对(图2-B),结果显示一致性为78.05%。 而且,上述物种都含有1个START结构域。

根据茶树CsHB1氨基酸序列在BLAST同源检 索与比对,获得不同植物中相似度较高的HD-Zip 氨基酸序列。利用ExPASy网站对CsHB1进行氨基 酸组成成分及理化性质分析(表1)。结果表明,在 这些植物中蛋白残基数为459~769。相对分子质

图1 茶树CsHB1转录因子系统进化树 Fig.1 Phylogenetic tree of CsHB1 transcription factor in C. sinensis

植物生理学报

		1	75	150		225		300	275	459
Α	CsHB1序列		444949					1		
	特异位点			18RA2_like						
1	起 级豕肤 茎树	Cainonaia	MEET TEMPORE	TENEDE NO	TENE SETTI	PUER ROUGER	PICIPOSEASPE	SMAXTMAN	ATT MDUNCH TSH FSCH	USP CONTRACT STOVA
	可可	T. cacao M. notabilis	MEELIRMAQSGE MEELIRMAQSGE	PLWVPGEK	STDVINEDEYL ASALINEDEYV	RUFF.RGIGEK RUFF.RGIGEK	PIGIRSEASRE	SAVVIMNEVNIX TAVVIMNETNIX	DILMDVNQWSSAFCGI DILMDVNQWSSAFCGI	VSRAMTLEVLSTGVA VSRAMTLEVLSTGVA
	木豆桃	C. cajan P. persica	MEELIGMAQMGE MEELIRMAQAGE	PLWLTTLDG PLWVPGDHNSSHN	ISTMINEDEYI NHETINEDEYI	RSFF.RGUGPK RUFF.RGUGPT	F <mark>SGEKC</mark> EASRE PUGIKSEASRE	TAVVIMNEVNI SALVIMNEVNI	DILMDVNQWSTVFSGI DILMDVNCWSTVFCGI	VSR <mark>AMTLEV</mark> LSTGVA VSRAMTLDILSTGVA
	雷蒙德氏棉 野生烟草	G.raimondii N.attenuata	MEELIRMAQSGE MEELIRMAQTGE	PLWVPGDNS PLWISSPDNS	STDVINEDEYL STETICEEEYV	R <mark>SFF.RGIGF</mark> K RIFF.RGIGFK	PIGLRSEASRE PIGLKSEASRE	SAVVIMNHVNIX SAVVIMNHINIX	DILMDVNÇW <mark>SSVE</mark> CGI DILMDVNÇW <mark>SSVE</mark> AGL	VSR <mark>AMTLEV</mark> LSTGVA VSR <mark>AMTLEV</mark> LSTGVA
	甜椒 甜橙	C.annuum C.sinensis	MEELIRMAQTGE MEEFLRMAQAGI	PLWIKTLDNS PLWT	SSETLSDEDYF . DQVLNEDDYL	RIFF.QGIGPK RIFF.RGIG	PIGLTSEASRE PIGLRSEASRE	SAVVIMNEINIX STVVIMNEVNIX	BILMDVNQW <mark>TSVF</mark> AGI BILMDVNQW <mark>SSVFC</mark> GI	VSR <mark>SLTLEV</mark> LSTGVA VSR <mark>AMTIEV</mark> LSTGVA
	芝麻 苹果	S. indicum M. domestica	MEELIRMAQSGE MEELIRMAEAGI	PLWIPSTDNS PLWXPGDHNSIH	SAETISEEDYV . CEILNEDDYL	RUFF.RGUGPK RUFF.RGUGPK	PIGMKSEASRE PIGIKSEASRE	SAWVIMNHINIK TALVIMNHVNIK	BILMDVNQWSSVFSSD BILMDVNQWSTVFCGD	VSRAMTLEVLSTGVA VSRAMTLDILSTGVA
	11 <u>制</u> 土瓶草 泰生花	C. follicularis	MEELIKKAHDGE	PLWIPISE	STEILNENEYE	RIFF.RGIGPK RIFF.RGIGPK	PIGLKSEASRE	TTIVIMNHISH SMUUTMNHINH	BILMDVNQWSSVFSGI BILMDVNQWSSVFCGI DILMDVNQWSSVFCGI	VSRAMTLEVLSTGVA VSRAMTLEVLSTGVA
	^{年一化} 野生大豆 Consensus	G. soja	MEDITRIAGACI mee a g	PLWVPSNH	HSEILNEEPIL le v	RIFFINELGER r fp g g	PICINSEASRE	SVVVIMNHINI SVVVIMNHINI vimnh 1	IDILMDVNQWSRVFAGI IDILMDVNQWSTVFCGI ilmdvngw f	VSRALTLEVLSTGVA VSRALTLEVLSTGVA Vsr lstova
	茶树	C.sinensis	GNYNGALQVMAA	DOOPSPLVPTRE	DNY IVRYCKO:	ADGOWAVVDVS	IDNICTSAISR	CRRRPSGCLICE	VENGYSKVINVEHNEV	DDRAWHNIYRFIYNS
	可 可 川桑	T.cacao M.notabilis	GNYNGALQVMTA GNFNGALQVMTA	ERQVPSPLVPTRI ERQVPSPLVPTRI	ENYFVRYCKOH ESYYVRYCKOH	TEGNWAVVDVS ADGNWAVVDVS	LICNIRPSPMSK LICNIRPSPAVR	CRRRPSGCLIQE CRRRPSGCLIQE	LENGYSKVIWVEHVEV Mengyskviwvehvev	DDRAVHNIYRPIVNS DDRGVHNIYKQIVNS
	木豆桃	C. cajan P. persica	GNYNGALQVMTS GNYNGALQVMTA	ENQUETPLVETRI ENQUESPLVETRI	ESYFVRYCKOH IN YFVRYCKOH	ADGNWAVVDVS VDGNWAVVDVS	LENIRPSPSAR LENIRPSPISR	CRRRPSGCLIQE SRRRPSGCLIQE	MENGYSKVIWIEHMEV DENGYSKVIWVEHMEV	DDRGVHNIYKQIVSS DDRSVHNIYRPIVNS
В	宙家德氏棉 野生烟草 珊瑚	N. attenuata	GNYNGALQVMDA GNYNGALQVMDA GNYNGALQVMDA	ERQVPSPLVPIR ERQVPSPLVPIR FROMPSPLVPTR	DA YEVRYCKOH DA YEVRYCKHH DA YEVRYCKHH	ADGNWAVVDVS ADGNWAVVDVS ADGNWAVVDVS	LENIRPNPMSK	CRRRPSGCLICE CRRRPSGCLICE	LENGYSKVIWVEHVEV LENGYSKVIWIEHIEV LENGYSKVIWIEHIEV	DDRAVENIINRPUVNS DDRAVENINRPLVNS
	甜橙	C. sinensis S. indicum	GNYNGALQVMTA GNYNGALQVMTA	ERQUPS PLVPTRI ERQUPS PLVPTRI	ON YFVRYCKOH ON YFVRYCKOH	SDGNWAVVDVS GDGNWAVVDVS	LENIRPSPISK	CRRRPSGCLIQE CRRRPSGCLIQE	LENGYSKVIWVEHVEV LENGYSKVIWVEHVEV	DDRSWHNIIYKPIVNS DDRAWHSIIYKPIVNS
	苹果	M.domestica V.vinifera	GNYNGALQVMTA GNYNGALQVMTA	ERQUPSPLVPTRI ERQUPSPLVPTRI	en yfvryckon En yfvryckhi	VDGUWAVVDVS PDGUWAVVDVS	L <mark>XNL</mark> RÇSPVSR	SRRRPSGCLIGE NRRRPSGCLIGE	içngyskvinvermev. Lengyskvinvermev.	DD <mark>SAVHNIYRFLVNS</mark> DD <mark>RAVHNIYRFLVNS</mark>
	土瓶草 牵牛花	C.follicularis I.nil	GNYNGALQVMTA GNYNGALQVM <mark>S</mark> A	ESQNPSPLVPTRI ESQNPSPLVPTRI	EN YFVRYCKOH EN YFVRYCKOH	IDG <mark>I</mark> WAVVDVS TDG <mark>I</mark> WAVVDVS	LENLRPSLIAR LETLRPSPISR	NRRRPSGCLIQE CRRRPSGCLIQE	LÇNGYSKV <mark>I</mark> WVEHMEV Mengysrviwiehmev	DDRAVHNIYRQVVNS DDRAVHSIYRFLVNS
	野生大豆 Consensus	G. soja	GNINGALQVASS gn ngalqvm	e q p plvptre	e y vryck	dg wavvdvs	DENDRENTISE	SRRRPSGCLIQE rrrpsgcliqe	ngys v w eh ev	ddrawesinarpiwns dd h y vs
	茶树	C.sinensis T.cacao	STAFGAKRWVAT GLAFGAKRWVAT	LERCORLASAMI	NNIFAGEIG SNIFAGELCV	ITSPEGRÖSMI ITSPEGRÖSMI	KLAPRAVNSPC KLAPRAVISPC	TGVCASTRHTWI TGVCASTRHAWI	TLS <mark>GSG</mark> ADDVRVMTRK TLSATGSDDVRVMTRK	5.MDDPGRPPGIVLS 5.MDDPGRPPGIVLS
	川桑	M.notabilis C.cajan	GHAFGAKRWVAT GHAFGAKRWVAT	LIRCOPRLASAMA LIRCOPRLASAMA	NTNIPNGEVGV NTNIPTVEVGV	ITNÇEGRKSML ITNÇEGRKSMM	KLADRUVISEC KLADRUVISEC	AGVSASTTHTWI AGVSASTAHTWI	TLS <mark>GTGA</mark> DDVRVMTRK TLS <mark>GT</mark> GADDVRVMTRK	R.V <mark>DD</mark> PGRPPGIVLS SSVDDPGRPPGIVLS
	桃 雷蒙德氏棉	P.persica G.raimondii	GLAFGAĞRWVAT GLAFGAĞRWVAT	'LDRQCDRLAS <mark>SM</mark> 'LDRQCDRLAS <mark>SM</mark>	NSNIFAGELCV NSNIFAGELCV	ITSPÞGRKSMI ITSPÞGRKSMI	KLAORUVMSEC KLADRUVTSEC	TGVCASTAHAWI TGVCASTAHAWI	TLS <mark>ATGS</mark> DDVRVMTRK TLS <mark>ATGS</mark> DDVRVMTRK	S.MDDPGRPPGIVLS S.MDDPGRPPGIVLS
	野生烟草 甜椒	N. attenuata C. annuum	GLAFGAKRWVAT GLAFGAKRWVAT	LIFRCOPRIASANA LIFRCOPRIASANA	ANNIFTGEIGV ANNIFTGEVGV	ITSPEGRRSMI ITSPEGRRSMI	KLADRÖVMSHC KLADRÖVMSHC	AGVCASTAHIWI AGVCASTAHIWI	TLSGSGADDVRVMTRK TLSGSGADDVRVMTRK	S.IDDPGRPPGIVLS S.IDDPGRPPGIVLS
	 甜燈 芝麻 茜田	S. indicum	GLAFGARRWAI GLAFGARRWAI	TIRCORLASSI TIRCORLASSI TIRCORLASSI	NNISAGEVGV SNIPAGELOV	IISPJGRASMI I <mark>SSP</mark> ÞGRASMI TUSÞÞGRASMI	KLADROVNSEC KLADROVNSEC	TGVCASTOHOWI TGVCASTOHTWI TGVCASTOHOWI	TLSGSG7DDVRVMIRK	S.MDDPGRPPGIVLS
	一不 葡萄 十瓶草	V. vinifera C. follicularis	GLAFGAÖRWVAT GLAFGAÖRWJAT	LIRCORLASAM LIRCORLASAM	SNIFAGEVGV NINIFAGELYV	ITSPPGR&SMI ITSPPGR&SMI	KLAPROVMSEC KLAPROVISEC	AGVCASTTHU TGVCASTRHAWI	TLS <mark>GS</mark> G2DDVRVMTRK TLS <mark>AI</mark> GSDDVRVMTRK	S.MDDPGRPPGIVLS S.MDDPGRPPGIVLS
	奉牛花 野生大豆	I.nil G.soja	GLAFGAKRWIAT GLAFGAKRWAT	LÞRÇCÞRLASSMA LÞRÇCÞRLASSMA	NNIFSVEGGV NNIFAGELOV	ITSPEGRØSMI ITSAEGRØSM	KLAPRÖVNSFC KLAPRÖVNSYC	AGVCASTRH <mark>T</mark> WI TGVCASTRH <mark>A</mark> WI	TLS <mark>GSG</mark> ADDVRVMTRK TLS <mark>ATGC</mark> DDVRVMTRK	S.IDDPGRPPGIVLS S.IDDPGRPPGIVLS
	Consensus		afga rw at	l rgc rlas a	ani v	i gr sm	kla r v s c	gv ast h wt	tls g ddvrvmtrk	d pgrppgivls

图2 茶树CsHB1转录因子的保守域(A)与其他物种氨基酸序列的多重比对(B)

Fig.2 The conserved domains (A) of CsHB1 and alignment of relative amino acid sequences in C. sinensis and other plants (B) 划线部分为START结构域。

量为(5.0~8.4)×10⁴;等电点范围在5.4~6.1之间,碱 性氨基酸比重略高于酸性氨基酸。脂肪族氨基酸 占比22%左右,芳香族氨基酸占比6%。

4 茶树CsHB1转录因子亲/疏水性分析

利用DNAMAN 6.0软件对茶树CsHB1转录因 子进行疏水性/亲水性分析。结果表明,茶树CsHB1 转录因子亲水性最强的的位点是第155位的半胱 氨酸(Cys)(图3-A);疏水性最强的位点分别是第57 位的缬氨酸(Val)(图3-B),CsHB1转录因子属于疏 水性蛋白。

5 茶树CsHB1转录因子氨基酸序列的无序化分析

利用FoldIndex程序对茶树CsHB1氨基酸序

列进行了折叠的无序化分析,结果显示(图4)茶树 CsHB1转录因子序列中不存在无序化区域。

6 茶树CsHB1转录因子的二级和三级结构预测与分析

茶树CsHB1转录因子的二级结构分析结果表明 (图5), CsHB1由30.28%的α-螺旋(α-helix)、8.50% 的β-折叠(β-turn)、24.18%的延伸主链(extended strand)和37.04%的随机卷曲(random coil)组成。茶 树CsHB1转录因子主要组成部分为随机卷曲、α-螺旋、延伸主链和β-折叠。

茶树CsHB1转录因子三级结构预测结果表明 (图6), 其三维结构中具有START结构域, 也含有多

表1 不同植物中HD-Zip转录因子氨基酸组成成分及理化性质分析

 Table 1 Comparison of amino acid sequences, physical and chemical characterizations of HD-Zip transcription factors among different plants

枯州	GenBank登录号	氨基酸	相对分子	珊边笙中占(m)	各氨基酸比例/%				
10.173		数目/个	质量/Da	理论等电点(pi) -	酸性	碱性	芳香族	脂肪族	
茶树(C. sinensis)	MF033534	459	49 508.35	5.35	10	10	6	25	
葡萄(V. vinifera)	XP_002266688.1	726	79 665.38	5.91	12	13	6	21	
芝麻(S. indicum)	XP_011086174.1	726	79 674.19	5.68	12	13	6	21	
野生烟草(N. attenuata)	OIT00329.1	730	80 134.63	5.65	12	12	6	21	
木豆(C. cajan)	KYP48247.1	700	76 621.64	5.67	12	12	6	21	
桃(P. persica)	XP_007214541.1	750	82 035.70	5.87	12	13	6	21	
川桑(M. notabilis)	EXC23121.1	769	83 617.61	5.84	12	12	6	20	
土瓶草(C. follicularis)	GAV85193.1	730	80 420.21	5.72	12	13	6	21	
野生大豆(G. soja)	KHN35197.1	686	75 294.26	6.07	11	12	6	22	
可可(T. cacao)	XP_007026002.1	720	78 919.57	5.80	12	13	6	21	
木本棉(G. arboreum)	KHG19735.1	725	79 660.57	5.67	12	13	6	22	
牵牛花(I. nil)	XP_019170324.1	729	80 054.77	5.69	12	12	6	21	
甜橙(C. sinensis)	XP_006468235.1	718	79 196.80	5.76	12	13	6	20	
甜椒(C. annuum)	XP_016570434.1	728	80 148.80	5.50	13	13	6	22	

植物生理学报

图4 茶树CsHB1折叠状态的分析 Fig.4 Analysis of the folding state of CsHB1 in C. sinensis 个α-螺旋和β-折叠, 建模的模板参考类固醇敏感脂 质调节蛋白START结构域。所以α-螺旋和β-折叠 等结构推测与二级结构是吻合的。

7 茶树CsHB1基因的表达分析

通过实时定量PCR检测*CsHB1*基因在茶树'龙 井43'中经过高温(38°C)、低温(4°C)、干旱(200 g·L⁻¹PEG)、高盐(200 mmol·L⁻¹ NaCl)胁迫处理后 的表达情况。从图7中可以看出,在上述4种非生物 胁迫条件下, *CsHB1*基因均被诱导表达,其相对表 达量在不同胁迫处理和胁迫时间下存在差异。38°C

图5 茶树CsHB1转录因子的二级结构预测 Fig.5 The secondary structure of CsHB1 transcription factor in *C. sinensis* 蓝色: α-螺旋; 红色: β-折叠; 绿色: β-转角; 粉色: 随机卷曲。

图6 茶树CsHB1的三维结构预测 Fig.6 The three-dimension structures of CsHB1 in C. sinensis

处理下, *CsHB1*基因的相对表达量在胁迫1和8 h时 高于对照, 8 h的表达量是对照的1.18倍。4°C处理 下, *CsHB1*基因的相对表达量在1 h时最低, 8 h的表 达量最高,为对照的1.52倍。干旱胁迫处理下,*CsHB1* 基因的相对表达量在1和4 h时与对照无显著差异, 在8 h时则显著高于对照,为对照的8.01倍,在24 h 时则呈下调趋势。盐胁迫处理下,*CsHB1*基因的相 对表达量在1 h显著低于对照,在4 h相对表达量显 著高于对照,为对照的3.27倍。

讨 论

茶树生存于自然界中的开放体系中,在生长发 育的过程中受到众多环境因子的影响,高低温、干 旱和盐胁迫等非生物胁迫是影响植物生长发育常 见的环境因子,茶树通过复杂的调控机制来适应 各种环境胁迫(田丽丽等2017)。转录因子在植物响 应不同逆境中发挥着重要作用,同时植物中的转录 因子通过表达调控进一步对植物的生长发育产生 重要的影响。因此,研究并分析茶树中与逆境胁迫 相关的转录因子具有重要的意义。

0.2 0 0 CK 1 8 24 CK 1 4 8 24 处理时间/h 处理时间/h С 14 D 3.5 12 3.0 10 相对表达量 2.5 相对表达量 8 2.0 6 1.5 4 1.0 2 0.5 0 0 CK CK 4 8 24 处理时间/h

本文克隆得到的茶树CsHB1基因编码的转录 因子具有START结构域的典型特征,这与Schrick 等(2004)的研究结果相吻合。对CsHB1转录因子 氨基酸组成成分、理化性质、亲水性/疏水性的分 析结果显示, CsHB1属于疏水性蛋白, 二级结构主 要表现为随意卷曲和α-螺旋结构。在三级结构中, CsHB1有START结构域, 典型的 α -螺旋和β-折叠 (Iaea等2015)。系统进化树表明CsHB1转录因子属 于HD-Zip家族里的HD-Zip IV亚家族, 与拟南芥 HD-Zip IV亚家族HDG2和HDG3亲缘关系最近 (Nakamura等2006)。序列比对发现CsHB1与多种 亲缘关系相近的植物的HD-Zip类转录因子的相似 性很高。

处理时间/h

Α

植物中HD-Zip转录因子参与生物和非生物胁 迫响应、细胞分化、生长发育、形态建成等生物 过程(Ariel等2007)。已有的研究证明, HD-Zip I亚 家族和II亚家族成员参与植物高低温、干旱和高盐 等非生物胁迫的调控(Ariel等2007; 王宏等2013)。 本文通过荧光定量PCR分析发现, CsHB1基因响应 茶树非生物胁迫,且对干旱和盐胁迫响应较大。 马铃薯在干旱、盐和ABA胁迫后, HD-Zip转录因 子ATHB12基因的表达量显著高于对照,其中马铃 薯在干旱8h后的表达量与本文CsHB1基因在干旱 8 h的表达量都达到最大,在低温胁迫后, ATHB12 表达量低于对照,低温胁迫后ATHB12和本文的 CsHB1基因都呈现先下调再上调的趋势(武亮亮等 2016)。拟南芥ATHB6、ATHB7和ATHB12转录因 子基因主要参与非生物胁迫反应和激素调控,表 达受到干旱胁迫以及外源应用ABA的诱导。但是 也有一些发现证明属于HD-Zip IV亚家族的拟南芥 HDG11 (AtEDT1)功能增强突变体更好赋予耐旱 性,具有多种改良耐旱性的特征,这表明过度表达 的HDG11可能在改善植物耐旱性方面发挥关键作 用(Yu等2008)。同时, HDG11的异位表达赋予转基 因水稻和甘薯耐旱性(Ruan等2012; Yu等2013), 另 外, HDG11也可以改善棉花、杨树和多年生草(高 羊茅)的耐盐性(Cao等2009; Yu等2015)。在本实验 中, CsHB1基因在干旱和盐胁迫下也明显差异表 达, 与上述研究一致。Chen等(2017)的研究发现在 拟南芥中异位表达GaHDG11能提高渗透胁迫能 力, 水分恢复能力显著提高, 水分损失率较低, 过 氧化氢酶、超氧化物歧化酶活性以及脯氨酸含量显 著提高, 丙二醛含量降低, 原根长度也明显增加。由 于GaHDG11是属于HD-ZIP IV家族, 而CsHB1基因 也属于HD-ZIP IV家族, 推测CsHB1基因很大可能 参与渗透耐受性并且CsHB1基因对于根的生长也 发挥着不少作用。

HD-Zip IV家族具有促进植物毛状体形成的 作用。在棉花中, HD-Zip IV基因GaHOX1在纤维 细胞中优势表达,说明该基因可能参与调控棉纤 维发育(Guan等2008)。在拟南芥START保守域家 族成员中,GL2在表皮毛的发育过程起到重要作用 (Nakata等2012), 对非根毛细胞及表皮毛的特化和 分化是必需的。GaHOX1在GL2的启动子控制下 会使拟南芥gl2-2突变体恢复野生型的表型,在35S 启动子的控制下抑制野生型拟南芥毛状体的发育, 类似于GL2的异位表达,表明GaHOX1和GL2在调 控植物毛状体发育过程中具有相同的功能(Guan等 2008)。此外,表皮毛在植物防御中起着至关重要 的作用,在一定程度上保护植物免受病原菌入侵和 非生物胁迫(Chew等2013)。GaHOX1是HD-ZIP IV 家族基因, 而CsHB1基因也属于HD-ZIP IV家族, 另 外,荧光定量PCR也显示CsHB1基因明显响应非生 物胁迫,推测CsHB1基因与植物的抗逆性有关。

近年来的研究已表明, HD-Zip转录因子家族 参与调控植物生长发育等多个过程。本文综合以 上结论得出, CsHB1转录因子在茶树响应非生物胁 迫的过程中发挥着重要作用。为了进一步认识 CsHB1转录因子对逆境的的调控机制, 还需要对其 调节途径和作用机理作进一步深入研究。本研究 同时表明, 利用非生物胁迫响应相关转录因子来 提高茶树对逆境的综合抗性, 是一种有潜力的分 子育种途径。

参考文献

Ariel FD, Diet A, Verdenaud M, Gruber V, Frugier F, Chan R, Crespi

M (2010). Environmental regulation of lateral root emergence in *Medicago truncatula* requires the HD-Zip I transcription factor HB 1. Plant Cell, 22 (7): 2171–2183

- Ariel FD, Manavella PA, Dezar CA, Chan RL (2007). The true story of the HD-Zip family. Trends Plant Sci, 12 (9): 419–426
- Arnold K, Bordoli L, Kopp J, Schwede T (2006). The SWISS-MOD-EL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22 (2): 195–201
- Cabello JV, Dezar CA, Manavella PA, Chan RL (2007). The intron of the *Arabidopsis thaliana COX5c* gene is able to improve the drought tolerance conferred by the sunflower *Hahb-4* transcription factor. Planta, 226 (5): 1143–1154
- Cao YJ, Wei Q, Liao Y, Song HL, Li X, Xiang CB, Kuai BK (2009). Ectopic overexpression of *AtHDG11* in tall fescue resulted in enhanced tolerance to drought and salt stress. Plant Cell Rep, 28 (4): 579–588
- Chen EY, Zhang XY, Yang ZE, Wang XQ, Yang ZR, Zhang CJ, Wu ZX, Kong DP, Liu Z, Zhao G, et al (2017). Genome-wide analysis of the HD-ZIP IV transcription factor family in *Gossypium arboreum* and *GaHDG11* involved in osmotic tolerance in transgenic *Arabidopsis*. Mol Genet Genomics, 292 (3): 593–609
- Chen XL, Yan D, Sun LN, Zeng RZ, Yang LF (2016). Cloning and expression analysis of *HbWRKY75* gene in leaf from *Hevea brasiliensis*. 52 (3): 250–258 (in Chinese with English abstract) [陈晓丽, 闫栋, 孙丽娜, 曾日中, 杨礼富(2016). 橡胶树WRKY 家族转录因子*HbWRKY75*基因的克隆及表达分析. 植物生理 学报, 52 (3): 250–258]
- Chew W, Hrmova M, Lopato S (2013). Role of homeodomain leucine zipper (HD-Zip) IV transcription factors in plant development and plant protection from deleterious environmental factors. Int J Mol Sci, 14 (4): 8122–8147
- Dezar CA, Gago GM, Gonzalez DH, Chan RL (2005). *Hahb-4*, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to *Arabidopsis thaliana* plants. Transgenic Res, 14 (4): 429–440
- Elhiti M, Stasolla C (2009). Structure and function of homodomain-leucine zipper (HD-Zip) proteins. Plant Signal Behav, 4 (2): 86–88
- Guan XY, Li QJ, Shan CM, Wang S, MaoYB, Wang LJ, Chen XY (2008). The HD-Zip IV gene *GaHOX1* from cotton is a functional homologue of the *Arabidopsis GLABRA2*. Physiol Plant, 134 (1): 174–182
- Iaea DB, Dikiy I, Kiburu I, Eliezer D, Maxfield FR (2015). STARD4 membrane interactions and sterol binding. Biochemistry, 54 (30): 4623–4636
- Liu Y, Wang LY, Wei K, Cheng H, Zhang F, Wu LY, Hu J (2016). Screening and validation of reference genes for quantitative real-time PCR analysis in tea plant (*Camellia sinensis*) under different nitrogen nutrition. J Tea Sci, 36 (1): 92–101 (in Chinese with English abstract) [刘圆, 王丽鸳, 韦康, 成浩, 张芬, 吴立赟, 胡娟(2016). 不同氮处理茶树实时定量PCR内参基因筛选和 验证. 茶叶科学, 36 (1): 92–101]
- Lopato S, Bazanova N, Morran S, Milligan AS, Shirley N, Langridge P (2006). Isolation of plant transcription factors using a modified yeast one-hybrid system. Plant Methods, 2: 3

- Nakamura M, Katsumata H, Abe M, Yabe N, Komeda Y, Yamamoto KT, Takahashi T (2006). Characterization of the class IV homeodomain-leucine zipper gene family in *Arabidopsis*. Plant Physiol, 141 (4): 1363–1375
- Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009). Transcriptional regulatory networks in response to abiotic stresses in *Arabidopsis* and grasses. Plant Physiol, 149 (1): 88–95
- Nakata M, Matsumoto N, Tsugeki R, Rikirsch E, Laux T, Okada K (2012). Roles of the middle domain-specific WUSCHEL-RE-LATED HOMEOBOX genes in early development of leaves in Arabidopsis. Plant Cell, 24 (2): 519–535
- Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 29 (9): 2002–2007
- Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE (2005). Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in *Arabidopsis* development. Plant Cell, 17 (1): 61–76
- Prilusky J, Felder CE, Zeev-ben-mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman JL (2005). FoldIndex[©]: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics, 21 (16): 3435–3438
- Ruan L, Chen LJ, Chen YH, He JL, Zhang W, Gao ZL, Zhang YH (2012). Expression of *Arabidopsis HOMEODOMAIN GLA-BROUS 11* enhances tolerance to drought stress in transgenic sweet potato plants. J Plant Biol, 55 (2): 151–158
- Schrick K, Nguyen D, Karlowski MW, Mayer KF (2004). START lipid/sterol-binding domains are amplified in plants and are predominantly associated with homeodomain transcription factors. Genome Biol, 5 (6): R41
- Sessa G, Carabelli M, Sassi M, Ciolfi A, Possenti M, Mittempergher F, Becker J, Morelli G, Ruberti I (2005). A dynamic balance between gene activation and repression regulates the shade avoidance response in *Arabidopsis*. Genes Dev, 19 (23): 2811–2815
- Sultan SE (2010). Plant developmental responses to the environment: eco-devo insights. Curr Opin Plant Biol, 13 (1): 96–101
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 30 (12): 2725–2729
- Tian LL, Huang JA, Liu ZH (2017). Research progress on resistance saline and alkaline of tea plant. 53 (2): 167–173 (in Chinese with English abstract) [田丽丽, 黄建安, 刘仲华(2017). 茶树抗盐碱 研究进展. 植物生理学报, 53 (2): 167–173]
- Wan XC (2003). Tea Biochemistry. Beijing: China Agricultural Publishing House, 319-358 [宛晓春(2003). 茶叶生物化学. 北京: 中国农业出版社, 319-358]

Wang H, Li GB, Zhang DY, Lin J, Sheng BL, Han JL, Chang YH

(2013). Biological function of HD-Zip transcription factors. Hereditas (Beijing), 35 (10): 1179–1188 (in Chinese with English abstract) [王宏, 李刚波, 张大勇, 蔺经, 盛宝龙, 韩金龙, 常有 宏(2013). 植物HD-Zip转录因子的生物学功能. 遗传, 35 (10): 1179–1188]

- Wang YX, Liu ZW, Wu ZJ, Li H, Zhuang J (2016). Transcriptome-wide identification and expression analysis of the NAC gene family in tea plant [*Camellia sinensis* (L.) O. Kuntze]. PLoS One, 11: e0166727
- Wu LL, Yao L, Ma R, Zhu X, Yang JW, Zhang N, Si HJ (2016). Cloning and functional identification of the *ATHB12* gene of HD-Zip I family in potato (*Solanum tuberosum* L.). Acta Agron Sin, 42 (8): 1112–1121 (in Chinese with English abstract) [武亮亮, 姚磊, 马瑞, 朱熙, 杨江伟, 张宁, 司怀军(2016). 马铃薯HD-Zip I家族 *ATHB12*基因的克隆及功能鉴定. 作物学报, 42 (8): 1112–1121]
- Wu ZJ, Li XH, Liu ZW, Li H, Wang YX, Zhuang J (2015a). Transcriptome-based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (*Camellia sinensis*). Funct Integr Genomics, 15 (6): 741–752
- Wu ZJ, Li XH, Liu ZW, Li H, Wang YX, Zhuang J (2015b). Transcriptome-wide identification of *Camellia sinensis* WRKY transcription factors in response to temperature stress. Mol Genet Genomics, 291 (1): 255–269
- Wu ZJ, Li XH, Liu ZW, Xu ZS, Zhuang J (2014). *De novo* assembly and transcriptome characterization: novel insights into catechins biosynthesis in *Camellia sinensis*. BMC Plant Biol, 14: 277
- Yang XG, Liang WH, Qi ZG, Ma WS, Shen YZ (2006). Molecular mechanism of plant response to abiotic stress. J Triticeae Crops, 26 (6): 158–161 (in Chinese with English abstract) [杨献光,梁 卫红,齐志广,马闻师, 沈银柱(2006). 植物非生物胁迫应答的 分子机制. 麦类作物学报, 26 (6): 158–161]
- Yu H, Chen X, Hong YY, Wang Y, Xu P, Ke SD, Liu HY, Zhu JK, Oliver DJ, Xiang CB (2008). Activated expression of an *Arabidopsis* HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell, 20 (4): 1134–1151
- Yu LH, Chen X, Wang Z, Wang SM, Wang YP, Zhu QS, Li SG, Xiang CB (2013). Arabidopsis enhanced drought tolerance1/ HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice with out yield penalty. Plant Physiol, 162 (3): 1378–1391
- Yu LH, Wu SJ, Peng YS, Liu RN, Chen X, Zhao P, Xu P, Zhu JB, Jiao GL, Pei Y, Xiang CB (2015). *Arabidopsis EDT1/HDG11* improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol J, 14 (1): 72–84

Cloning and expression analysis of the gene encoding HD-Zip under abiotic stress in *Camellia sinensis*

TENG Rui-Min, LI Hui, WANG Wen-Li, SHEN Wei, WANG Ying, CUI Xin, ZHUANG Jing^{*} College of Horticulture, Tea Science Research Institute, Nanjing Agricultural University, Nanjing 210095, China

Abstract: Tea tree [*Camellia sinensis* (L.) O. Kuntze] as a kind of leaf plants, has important economic value. However, abiotic stress has a great influence on the production of tea. In this study, a gene encoding HD-Zip transcription factor (*CsHB1*) was cloned from tea cultivar 'Longjing 43' cDNA by RT-PCR method. Sequence analysis showed that the conserved region of *CsHB1* contained 1 380 bp encoding a total of 459 amino acids, containing a typical START domain. Evolutionary analysis showed that the tea plant *CsHB1* belonged to the HD-Zip IV family. Multiple sequence comparison revealed that *CsHB1* had 78.05% similarity to the amino acid sequence of the HD-Zip protein of other species, such as *Vitis vinifera*, *Nicotiana attenuata*, *Sesamum indicum*, and so on. The analysis of the physical and chemical properties of CsHB1 transcription factors, pro/hydrophobicity, and disorder showed that CsHB1 transcription factor was a hydrophobic protein and showed partial alkalinity, and there was no disorder region. According to the analysis of spatial structure that *CsHB1* has 3 alpha-helices, multiple beta-folds, and START domain. The expression of *CsHB1* at high temperature (38°C), low temperature (4°C), PEG drought (200 g·L⁻¹) and NaCl (200 mmol·L⁻¹) was analyzed by fluorescence quantitative PCR. The results showed that *CsHB1* could induce the expression under stress, and the difference was obvious.

Key words: Camellia sinensis; HD-Zip transcription factor; gene clone; abiotic stress; expression profiles

Received 2017-05-27 Accepted 2017-09-01

This work was supported by the National Natural Science Foundation of China (Grant No. 31570691).

^{*}Corresponding author (E-mail: zhuangjing@njau.edu.cn).