研究报告 Original Papers

基于RNA-Seq数据筛选的银叶真藓耐干相关基因表达模式研究

梁玉青^{1,2},李小双¹,高贝³,杨红兰¹,张道远^{1,*},管开云¹

¹中国科学院新疆生态与地理研究所,中国科学院干旱区生物地理与生物资源重点实验室,乌鲁木齐830011;²中国科学院大学,北京100049;³香港中文大学农业生物技术国家重点实验室,香港999077

摘要:本文以前期获得的银叶真藓在干旱-复水过程中的转录组数据为基础,选择了9个在干旱-复水条件下基因表达差异明显的相关耐干响应基因,并利用荧光定量PCR技术研究其在干旱-复水、ABA诱导胁迫及盐胁迫下的表达模式。研究结果表明,RT-qPCR实验获得的9个基因在干旱-复水下的表达趋势与RNA-Seq基因表达谱中基因表达规律基本一致,因此较好地验证了RNA-Seq数据的可靠性。在干旱-复水过程中,9个基因均不同程度受到干旱和复水诱导表达,但复水阶段基因诱导表达更为强烈,且大多数基因表达量在复水2h达到高峰,如ERF、Dehydrin (DHN)和HSF3基因等。在ABA和盐胁迫处理下,9个耐干相关基因中有8个同时受ABA和盐诱导上调表达,其中ERF、DHN和LEA基因受ABA和盐胁迫上调表达最为显著。综上,ERF、DHN和LEA等基因同时受干旱-复水,ABA和高盐强烈诱导表达,可作为将来重点研究的抗逆基因。 关键词:银叶真藓;耐干;转录组;RT-qPCR;表达模式

干旱、高盐、高温等极端环境会严重影响植物的生长发育,最终导致作物的减产(Boyer 1982; 刘强等2000)。为了适应极其复杂而恶劣的环境, 植物逐渐进化产生一系列生物学机制来抵御各种 逆境胁迫。苔藓是最早登陆的植物,陆地高浓度 的氧含量、强烈的大气辐射以及剧烈的温度变化 使得该类植物进化出了特殊干旱适应机制,其中 一支分布在岩石、沙漠等环境含水量剧烈变化地 区的耐干藓类(desiccation-tolerance moss)尤为特 殊。耐干藓类是一种典型的复苏植物,即可脱水 95%以上"干而不死",并且遇水数秒内快速复苏。 其干燥时强大的细胞保护以及复水时快速的细胞 修复过程是其他普通陆生植物无法比拟的,其特殊 的耐干分子机制引起广泛关注(Oliver等2004)。

银叶真藓隶属真藓科真藓属,是藓类植物的 典型代表种(郑云普等2009),也是具有最高耐干等 级(A级)的植物(Wood 2007)。它具有极强的抗 旱、耐盐、抗高温等综合抗性,是植物抗逆尤其 是耐干机制研究的理想材料。对银叶真藓的相关 研究集中在形态发育(李利博和赵建成2009)、系 统分类(李利博等2009)、组织培养(Sabovljevi等 2002)、生理特性(回嵘等2012;石勇等2012)等方 面,但关于其抗逆分子机制研究较为薄弱,仅见于 Gao等(2015)基于转录组的耐干分子机制解析。开 展该种相关抗逆基因的筛选与深入挖掘,对于开 发利用抗逆基因资源和深入理解该种的耐干机制 均有重要的意义。

本研究前期通过RNA-Seq技术获得了银叶真 藓在干旱-复水处理下的转录组数据,并获得较为 完备的数字表达谱(Gao等2015)。基于数据分析, 发现并筛选了一批干旱-复水过程响应的基因,它 们是经典的抗逆相关功能基因胚胎发育晚期丰富 蛋白基因(late embriogenesis abundant protein, LEA)、 脱水素基因(dehydrin, DHN)、蔗糖酶合成酶基因 (sucrose synthase SuSy3); 与光合作用相关的基因, 如捕光色素蛋白复合物基因(light-harvesting complex, LHCA2); 公认的逆境响应调控因子转录因子 类,如乙烯响应转录因子基因(ethylene responsive transcription factor, ERF)、禽成髓细胞瘤病毒致癌 同源转录因子基因(myb avian myeloblastosis viral oncogene homolog transcription factor, MYB)、热激 转录因子基因(heat shock transcription factor, HSF3); 与脱落酸(abscisic acid, ABA)的合成和信号转导相 关的基因,如蔗糖非酵解型蛋白激酶基因(sucrose non-fermenting 1-related protein kinase, SnRK), \pm 米黄素环氧化酶基因(zeaxanthin epoxidase, ZEP)。 本研究将在前期研究基础上,进一步结合荧光定量 PCR技术研究这些基因在干旱-复水、ABA和NaCl 处理下的表达模式,以期实验验证RNA-Seq基因表 达谱中基因表达规律结果的可靠性;研究几类耐 干响应基因在干旱-复水过程中的表达模式,并探

收稿 2016-09-24 修定 2017-02-21

资助 新疆维吾尔自治区自然科学基金面上项目(2015211A047)。

* 通讯作者(E-mail: zhangdy@ms.xjb.ac.cn)。

讨其在复苏阶段可能的细胞保护与修复作用机制; 分析这些耐干相关基因对ABA、盐诱导胁迫的响 应规律,为进一步基因功能验证以及后续基因深 入挖掘利用奠定理论基础。

材料与方法

1 植物材料的收集,培养及处理方式

本研究实验材料为银叶真藓(Bryum argenteum Hedw.)生长良好且长势一致的单克隆组织培养材 料。干旱-复水处理:将银叶真藓组织培养材料至 于室温下空气干燥(相对湿度为30%,温度为25°C± 2°C), 于干旱(D) 0、2、12和24 h后取样品。再将 室温空气干燥24 h的银叶真藓样品置于含有8 mL 无菌水的90 cm直径培养皿中进行复水,分别取复 水(R) 2、12、24和48 h的银叶真藓样品。ABA和 盐处理: 将银叶真藓组织培养材料分别转移至含 有8 mL的150 mmol·L⁻¹ ABA和250 mmol·L⁻¹ NaCl 溶液的90 cm直径的培养皿中,分别于0、2、6、12 和24 h取银叶真藓样品。每个时间点处理的样品 取3份做生物学重复,每个样品取6株(约100 mg), 用锡箔纸包好,快速放入液氮中速冻,然后保存 于-80°C冰箱。

2 主要试剂及仪器

RNA提取试剂盒(Plant RNA Kit购自Omega生 物公司,反转录试剂盒(PrimeScript[™] RT reagent Kit with gDNA Eraser)和荧光定量试剂盒(SYBR® Premix Ex TaqTM II (Tli RNaseH Plus)均购自宝生 物工程(大连)有限公司,其他试剂均为国产分析 纯。定量仪器为CFX96实时荧光定量PCR仪(BIO-RAD).

3 引物设计

引物设计使用Primer Premier 5.0软件,设计的 引物GC含量均为40%~60%, 退火温度控制在 58~60°C, 扩增片段长度为100~300 bp。引物由苏 州金唯智生物科技有限公司合成。

4 实验方法

4.1 RNA的提取

总RNA提取按照Omega的Plant RNA Kit试剂 盒说明书的步骤进行。RNA的完整性用1%的琼脂 糖凝胶进行检测。选取OD_{260/280}值介于1.8~2.0, OD_{260/230}值大于2.0的RNA样品用于后续的实验。

4.2 cDNA的合成

分别取1 μL总RNA用于反转合成cDNA,反转 录反应按照宝生物工程(大连)有限公司生产的PrimeScript[™] RT reagent Kit试剂盒说明书步骤进行。

4.3 相对定量标准曲线的制作

将cDNA模板10倍梯度稀释,浓度分别为10⁻¹、 10⁻²、10⁻³、10⁻⁴、10⁻⁵、10⁻⁶和10⁻⁷。C_t值与起始模 板浓度的对数呈现高度的相关性,即相关系数R> 0.995, 扩增效率E=90%~110%之间的引物合格可 用于后续荧光定量实验。扩增体系为20 μL; 2× SYBR[®] Premix Ex Tag[™] II 10 µL、正反向引物各 0.8 µL、Rnase free ddH2O 6.4 µL、cDNA模板(10 倍稀释) 2 µL。扩增程序为: 95℃ 30 s→(95℃ 5 s, 59.5°C 30 s) 40个循环→95°C 10 s→65°C 5 s $\rightarrow 95^{\circ}C_{\circ}$

4.4 实时荧光定量PCR分析

按照标准实时定量PCR引物设计原则设计真藓 耐干相关基因的序列设计特异引物(表1), 以各个处 理不同时间点的真藓cDNA样品为模板, 以真藓 Actin基因作为内参基因进行实时荧光定量PCR扩增 分析。扩增体系和扩增程序同标准曲线制作方法。 4.5 定量数据分析

使用相对定量法,依据实时定量PCR获得各 个处理的不同时间点的9个基因和内参基因Actin 的C_t值,按照2^{-ΔΔC}t法来计算目的基因的相对表达量 (Livak和Schmittgen 2001)。每个实验3个生物学重 复、3个技术重复、相对表达量均用平均值±标准误 来表示,数据处理使用IBM SPSS Statistics 19软件, 作图软件使用Origin 8和Adobe Illustrator CS6。

实验结果

1 基于RNA-Seg数据筛选的银叶真藓耐干相关基因

银叶真藓转录组数据库一共获得76 206条 unigenes, 发现在干旱-复水过程中有11 303个基因 呈现差异表达(Gao等2015)。本研究从中选取了一 些干旱-复水过程响应基因类型,包括经典的抗逆 相关功能基因(LEA、DHN、SuSy3、LHCA2),转 录因子基因(ERF、MYB、HSF3)以及在ABA合 成、信号通路上的代表基因(SnRK、ZEP)。所选 取的基因情况及干旱-复水过程基因差异表达倍数 见表2。

植物生理学报

表1 银叶真藓9个相关耐干相关基因荧光定量PCR引物序列信息

Table 1 Nine desiccation tolerance related genes primer sequences information for RT-qPCR analysis of B. argenteum

基因分类	基因缩写	引物序列F (5'→3')	引物序列R (5'→3')	长度/bp
功能基因	LEA	GACAGGGAAACTATCACCGAATC	GCATCAAGAAGACCACCACCAT	197
	DHN	CTATGGCGGCGTCAGTGAGC	CGGAGCGGAAGTCCTGGTAC	200
	SuSy3	CATTAGGGTTGGAGAAAGGC	CCACGCTGAACACCATAGGA	141
	LHCA2	TTTGTGATGGCTCCACGATA	CAGACGAAAAGACACTAAGGAT	122
转录因子	ERF	TGTTTTCGTATGGGCCTGAA	ATGTTGCTCTTGCGTGGGAC	156
	MYB	CTTTGCCGTGGCTCATCTTC	GCACTTACCGTTGGGCGTCTC	152
	HSF3	AGCAGTCGGCTCAACCTCAG	TCAGCACATTCTTATCCCTCTTC	141
与ABA相关基因	SnRK	AGTGCGGTTCAAGGAGGTCAT	AGGAGCAGGGCTTCCATCTAG	232
	ZEP	CCGTCTGTATCTCACTCTGCT	TTCCCACCGACACTATCAGG	240
内参基因	Actin	CTCTTAACCCCAAGGCAAACAG	CTTCATCAGGGCATCAGTCAG	243

表2 基于RNA-Seq数据筛选的银叶真藓耐干相关响应基因

Table 2	Desiccation to	lerance related	genes based	l on RNA-S	Seq technique	of B. argenteum
---------	----------------	-----------------	-------------	------------	---------------	-----------------

其田公米	其田今秋乃烷官	林寻祖测这早	基因差异表达倍数变化(Log ₂)			
举四万关	坐 囚主你汉 <u>北</u> 马	校永组例厅 5	干旱2 h	干旱24 h	复水2 h	复水48 h
功能基因	胚胎发育晚期丰富蛋白基因(LEA)	TR89377 c0_g1_i1	+4.43	+4.61	+4.11	-2.15
	脱水素基因(DHN)	TR91882 c1_g1_i1	+3.06	+3.08	+3.83	-2.76
	蔗糖合成酶基因(SuSy3)	TR87355 c4_g1_i1	+3.42	+3.62	+3.28	-1.74
	捕光色素蛋白复合物基因(LHCA2)	TR72249 c0_g1_i2	-0.88	-1.02	-1.66	+0.35
转录因子	乙烯响应转录因子基因(ERF)	TR51243 c0_g1_i1	+5.71	+5.62	+7.72	+0.21
	禽成髓细胞瘤病毒致癌同源转录因子基因(MYB)	TR94041 c0_g1_i1	+1.94	+1.87	+2.08	-1.48
	热激转录因子基因(HSF3)	TR116182 c0_g1_i2	+0.95	+0.96	+3.82	+0.1
与ABA相关基因	蔗糖非酵解型蛋白激酶基因(SnRK)	TR32094 c0_g1_i1	+3.34	+3.35	+3.35	-0.18
	玉米黄素环氧化酶基因(ZEP)	TR125288 c0_g1_i5	+1.59	+1.39	+0.63	-0.56

+: 上调表达; -: 下调表达。

2 银叶真藓耐干相关基因在干旱-复水处理下的表达模式

9个银叶真藓耐干相关基因在干旱-复水处理 下的基因表达模式如图1所示。

4个功能基因(LEA、DHN、SuSy3和LHCA2) 对干旱-复水处理表现出相似的响应趋势(图1-A~D), 在干旱处理阶段,随着时间的延长,4个功能基因相 比较对照没有表现出明显的上调(LEA、SuSy3)或 者下调(LHCA2)表达变化(相对表达量变化<2)。而 在复水早期阶段(2 h),除LHCA2基因外,其余3个基 因表达显著上调,随着复水时间的延长,其表达量 逐渐呈下降趋势。其中,DHN基因对于复水过程 的响应最为强烈,相比较对照及干旱过程,复水2 h 基因表达上调10余倍。

转录因子ERF、MYB和HSF3基因对干旱-复 水处理响应趋势不尽相同。其中, ERF基因的表达 量在干旱处理下快速上调(图1-E),达到对照的25 倍左右;且在复水的早期阶段(2h)其表达量进一步 剧烈上调至对照的150倍,随后又呈现出下降的趋 势,但相比对照其表达量仍然很高。*MYB*基因在 干旱早期(2h)阶段即表现出显著上调表达,其表达 量在干旱2h达到最高,经复水后,其表达量逐渐下 降(图1-F)。*HSF3*基因的表达在干旱阶段的表达量 相比对照有所上调,但上调不显著(图1-G);在复水 的早期阶段(2h),其表达量达到最高,后随着复水 时间的延长,其表达量逐渐下降,但其表达量仍然 比对照高。

2个ABA相关基因对干旱-复水处理响应趋势 基本相同,但响应高峰时间以及表达量差异较 大。其中,与ABA信号转导相关的*SnRK*基因表达 量在干旱处理下显著上调;在复水的早期阶段(2 h) 时达到最高值,随后其表达量逐渐下降(图1-H)。

图1 银叶真藓9个耐干相关响应基因在干旱-复水处理下实时荧光定量表达分析和RNA-Seq基因表达谱 Fig.1 Quantitative real-time PCR analysis and RNA-Seq gene expression profiles of nine desiccation tolerance-associated genes under dehydration and rehydration treatments of *B. argenteum*

而与ABA合成相关的ZEP基因在干旱处理下,呈现不同程度的上调趋势,在复水的中期阶段(12 h)达到最大值,随后逐渐下降(图1-I)。

3 银叶真藓耐干相关基因在ABA处理下的表达模式

9个银叶真藓耐干相关基因在150 mmol·L⁻¹ABA 处理下的基因表达模式如图2所示。

3个功能基因(*LEA、DHN、SuSy3*)在ABA的 处理下有较为相似的表达趋势;即在ABA诱导的 早期阶段(0.5 h)基因表达量开始上调,至6 h达到表 达量高峰,随后又逐渐呈下降趋势。其中*LEA*和 DHN基因的表达量上调明显(图2-A和B), LEA基因 在ABA处理2 h时的表达量为对照的8倍, 6 h时为 10倍左右。而DHN基因的表达在2 h时与LEA相当, 6 h时达到对照的25倍。SuSy3基因在6 h的表达量 为对照的4倍左右。在ABA处理的晚期阶段(24 h), LEA和DHN基因的表达均恢复到本底表达水平, 而 SuSy3基因的表达仍然是对照的2倍(图2-C)。与光 合作用相关的LHCA2基因受ABA诱导表达的作用 不明显, 虽表达量有所差异, 但相对表达量变化幅 度<1 (图2-D)。

391

图2 银叶真藓9个耐干相关响应基因在ABA处理下的实时荧光定量表达分析 Fig.2 Quantitative real-time PCR analysis of nine desiccation tolerance-associated genes of *B. argenteum* under ABA treatment

*ERF*转录因子基因受ABA强烈诱导表达。在 ABA处理的早期阶段(0.5h),其表达量即骤升至对 照的75倍左右(图2-E),后随着ABA处理时间的延 长而降低,至24 h仍高于对照近20倍。*MYB*基因的 在ABA处理下为上调表达(图2-F),且总体趋势为先 升高后降低(6 h为高峰)。*HSF3*基因受ABA诱导表 达不强,虽表现出2 h表达量达高峰后下调表达的 趋势,但相对表达量变化幅度<2 (图2-G)。

ABA信号转导关键基因SnRK基因在ABA的 诱导下表达呈单峰曲线模式(图2-H),在6 h达到表 达量最大值,为初始状态的8倍,后逐渐降低。ABA 合成相关基因ZEP基因在ABA处理下表达量呈先 升高再降低的趋势,但相对表达量变化幅度<1.2 (图2-I)。 4 银叶真藓耐干相关基因在NaCl处理下的表达模式

9个银叶真藓耐干相关基因在250 mmol·L⁻¹ NaCl处理下的表达模式如图3所示。

4个功能基因(LEA、DHN、SuSy3和LHCA2)在 NaCl处理下的表达模式不尽相同。其中,LEA和 DHN基因表达呈单峰模式,即表达量随着处理时间 的增加而增加,至6h达到最大值,随后逐渐降低(图 3-A、B)。SuSy3基因在NaCl的处理下,其表达量呈 逐渐升高趋势(图3-C),在处理晚期阶段(24 h)达到最 大值,是初始对照的近10倍。光合作用相关LH-CA2 基因在NaCl处理下,其表达量呈逐渐降低趋势(图 3-D),且随着处理时间的延长,其下调越明显。

转录因子类基因中的ERF基因受NaCl诱导强 烈表达,在NaCl处理的早期阶段(0.5 h)迅速上调

图3 银叶真藓9个耐干相关响应基因在NaCl处理下的实时荧光定量表达分析 Fig.3 Quantitative real-time PCR analysis of nine desiccation tolerance associated-genes of *B. argenteum* under NaCl treatment

(图3-E),为对照的60倍,2h后表达量又有所降低, 后随着NaCl处理时间的延长,其表达量又呈现逐 渐上升的趋势,并在晚期阶段(24h)达到最大值,约 为对照的90倍。*MYB*基因的表达在NaCl的处理下 均为上调表达(图3-F),在处理的早期(0.5和2h)和 中期阶段(6h)表达量较高,晚期阶段(12和24h)表 达量又有所下降,但总体响应不强(相对表达量< 2.5)。*HSF3*基因在NaCl处理的早期阶段(0.5和2h) 不响应(图3-G),6h轻微下调表达,晚期阶段(12和 24h)显著上调表达,且在24h时达到最大值,为对 照的6.5倍左右。

SnRK基因在NaCl处理下为上调表达趋势(图 3-H), 且在6 h达到最大值, 达对照的9倍, 随后12和 24 h表达量有轻微降低。而ZEP基因与SnRK基因 的表达模式相反(图3-I), 在NaCl处理下为下调表

达,并且在6h达到最低值,后随着处理时间的延长, 其表达量又逐渐升高,并且在处理的晚期阶段达 到最大值,此时的表达量为对照的2倍。

讨 论

基于第二代高通量测序技术所得到的转录组 数据信息对系统揭示苔藓植物干旱-复水过程的分 子作用机制、全局掌握基因调控及基因作用关系 有重要意义。为了进一步开展基于银叶真藓干旱-复水转录组数据的基因信息深度挖据,有必要对 转录组数据所反映的基因表达规律的可靠性进行 实验验证。本研究结果表明,大多数所选的基于 RT-qPCR实验方法所得到的基因相对表达量变化 趋势与基于RNA-Seq中FPKM指标方法所得到的 基因表达趋势相吻合(图1)。其中,3个转录因子基

393

因(ERF、MYB、HSF)用2种方法得到的基因表达 趋势完全一致; 3个与干旱时脱水保护相关的功能 基因(LEA、Dehydrin和SuSy3)用2种方法得到的基 因表达趋势基本相同,但干燥状态(干旱2和24 h) RNA-Seq的基因上调表达较RT-qPCR更为迅速;在 干旱阶段,ABA相关基因SnRK及ZEP基因用2种方 法得到的基因表达趋势基本一致,但复水阶段 RT-qPCR检测到表达高峰。总体来看,2种方法所 得到的基因表达趋势基本一致,RT-qPCR实验验证 了RNA-Seq基因表达谱中基因表达规律结果的可 靠性。

目前研究复苏植物的干旱过程十分普遍,但 集中于复水过程的研究却很少见。事实上,复水 过程是细胞组建的恢复并伴随一系列的细胞正常 代谢功能的再激活,因此,此过程是整个耐干现象 的重要组成部分。本研究通过干旱-复水转录组数 据并结合RT-qPCR来研究几类耐干响应基因在干 旱-复水过程中的表达模式。转录组数据和RT-qP-CR结果均证明,银叶真藓中的大多数基因在复水 的早期阶段相对于干旱阶段表达量更高。本研究 重点关注了2个参与复水过程重要的耐干旱响应 功能基因,即DHN和SuSv3。Dehydrin作为LEA蛋 白的第二家族的成员,已有研究表明其在苔藓耐 干旱过程中的重要地位(Jenks和Wood 2008)。与已 报道的小立碗藓PpDHNA与山墙藓Tr288在干旱条 件下的显著上调表达模式不同(Saavedra等2006; Wood和Oliver 1999)、本研究BaDHN不受干旱胁迫 所诱导,而在复水的早期阶段,其表达量出现瞬时 升高。蔗糖合成酶(SuSy)是蔗糖代谢关键酶,已有 报道蔗糖作为干燥细胞中参与细胞膜玻璃化的成 分能够有效地降低由于脱水造成的细胞损伤,并 保护细胞结构的完整性(Wu等2012)。本研究中 BaSuSy3受干旱诱导表达,并且在复水早期阶段(2 h)表达量升高。这说明了BaDHN和BaSuSy3在苔 藓复水过程中可能参与细胞快速修复和减少细胞 损伤的过程中的重要作用。

植物响应干旱、高盐、ABA等非生物胁迫应 答十分复杂,并且存在交叉现象。本研究中*BaLEA* 基因和己报道的大多数文献中高等植物LEA蛋白 基因一致,能够响应干旱、盐和ABA (Hundertmark 和Hincha 2008; Duan和Cai 2012; Checker等 2012)。但是BaLEA在各个胁迫下的表达模式与小 立碗藓的瞬时性波动表达模式不同(Shinde等2012, 2013), BaLEA均为早期诱导表达(图1-A、图2-A和 图3-A),其在ABA诱导下的表达量比干旱和盐处 理下高,说明了BaLEA基因在抗逆机制中的依赖于 ABA信号通路上的重要作用。本研究中BaERF的 表达模式与大多数研究报道一致(Nakano等2006); 能够同时响应干旱、盐和ABA胁迫,所不同的是 BaERF在盐处理和ABA处理下的早期阶段出现瞬 时强烈的表达。除此以外,银叶真藓干旱-复水转 录组中关于转录因子家族的注释中,发现其中ERF 转录因子家族成员数量最多(Gao等2015), 这与之 前报导的齿肋赤藓(Gao等2014)和小立碗藓中ERF 转录因子的数量情况一致(Jin等2014)。这充分说 明ERF转录因子对于植物抗逆, 尤其是快速响应 ABA信号分子参与基因表达调控的重要地位。 ABA是植物逆境胁迫中重要的植物激素,它能广 泛地参与到植物干旱、低温和渗透胁迫等非生物 胁迫应答反应(Zeevaart等1988)。已有报道,在脱 水处理下,几种苔藓的内源ABA的水平显著提高, 而施加外源ABA能够引发耐干性(Werner等1991; Hellwege等1994)。

SnRK基因和ZEP基因分别是ABA信号转导和 合成途径中重要的调控基因(孔伟胜等2016; Seo和 Koshiba 2002), 它们在植物细胞响应逆境因子通路 上有很大的关联性。本研究中, 盐胁迫下的BaSnRK 基因逐步上调, 而BaZEP基因只在处理晚期阶段上 调表达, 暗示银叶真藓发挥抗盐作用可能主要依赖 于ABA信号转导通路, 而不是依赖于内源ABA的 合成。在ABA处理下, 由于过多的ABA摄入, 植物 体内不再合成ABA, 此时BaZEP基因下调表达, 而 接受到外源ABA信号的BaSnRK基因表达上调(图 2-H和I), 其下游的相关抗逆基因也被激活表达。

综上所述,本研究在银叶真藓干旱-复水转录 组基础上,通过实时荧光定量PCR技术对相关耐干 基因进行表达模式分析,不仅验证了转录组数据 的所反映的基因表达趋势的可靠性,同时探讨了 复水阶段的细胞保护及修复作用,并分析各基因 在干旱、盐及ABA处理下的表达模式,这对于开 发利用抗逆基因资源和深入理解该种的耐干机制 均有意义。

394

参考文献

- Boyer JS (1982). Plant productivity and environment. Science, 218 (4571): 443–448
- Checker VG, Chhibbar AK, Khurana P (2012). Stress-inducible expression of barley *Hva1* gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Res, 21 (5): 939–957
- Duan JL, Cai WM (2012). *OsLEA3-2*, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS One, 7 (9): e45117
- Gao B, Zhang DY, Li XS, Yang HL, Wood AJ (2014). De novo assembly and characterization of the transcriptome in the desiccation-tolerant moss *Syntrichia caninervis*. BMC Res Notes, 7 (1): 1–12
- Gao B, Zhang DY, Li XS, Yang HL, Zhang YM, Wood AJ (2015). De novo transcriptome characterization and gene expression profiling of the desiccation tolerant moss *Bryum argenteum*, following rehydration. BMC Genomics, 16 (1): 1–14
- Hellwege EM, Dietz KJ, Volk OH, Hartung W (1994). Abscisic Acid and the induction of desiccation tolerance in the extremely xerophilic *Liverwortexormotheca holstii*. Planta, 194 (4): 525–531
- Hui R, Li XR, Jia RL, Zhao X, Liu YM, Chen CY (2012). Effects of enhanced UV-B radiation on physiological characteristics of *Bryum argenteum*. Chin J Ecol, 31 (1): 38–43 (in Chinese with English abstract) [回嵘, 李新荣, 贾荣亮, 赵昕, 刘艳梅, 陈翠云 (2012). 增强UV-B辐射对真藓结皮生理特性的影响. 生态学杂 志, 31 (1): 38–43]
- Hundertmark M, Hincha DK (2008). LEA (late embryogenesis abundant) proteins and their encoding genes in *Arabidopsis thaliana*. BMC Genomics, 9 (9): 1–22
- Jenks MA, Wood AJ (2008). Plant desiccation tolerance. Ecol Stu, 215: 51–90
- Jin J, Zhang H, Kong L, Gao G, Luo J (2014). Planttfdb 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res, 42 (2): 1182–1187
- Kong WS, Liu Y, Wang LJ, Li SF, Zhang HR (2016). Research progress of plant family of SnRK. Plant Physiol J, (4): 413–422 (in Chinese with English abstract) [孔伟胜, 刘言, 王林娟, 李胜飞, 张海荣(2016). 植物SnRK家族的研究进展. 植物生理学报, (4): 413–422]
- Li LB, Zhao JC (2009). Peristome morphology of *Bryum hedw*, (*Musci Bryaceae*) and its taxonomic significance. Bull Bota Res, 29 (6): 651–658 (in Chinese with English abstract) [李利博, 赵建成(2009). 真藓属(*Bryum hedw*.)蒴齿形态特征及其分类学意义. 植物研究, 29 (6): 651–658]
- Li LB, Zhao JC, Cao N (2009). A taxonomical study on genus *Bryum Hedw.* of Hebei. Chin J Hebei Normal Univ, 29 (6): 800-809 (in Chinese with English abstract)[李利博, 赵建成, 曹娜(2009). 河北省真藓属(*Bryum Hedw.*)植物分类学研究. 河北师范大 学学报, 29 (6): 800-809]
- Liu Q, Zhao NM, Yamaguchi-Shinozaki K, Shinozaki K (2000). Roles of DREB transcription factor in enhancing stress resistance of plant. Chin Sci Bull, 45 (1): 11–16 (in Chinese) [刘强,赵南明, Yamaguchi-Shinozaki K, Shinozaki K (2000). 植物DREB转录

因子在提高作物抗逆性中的作用. 科学通报, 45 (1): 11-16]

- Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\triangle \triangle Ct}$, method. Methods, 25 (4): 402–408
- Nakano T, Suzuki K, Fujimura T, Shinshi H (2006). Genome-wide analysis of the *ERF* gene family in *Arabidopsis* and rice. Plant Physiol, 140 (2): 411–432
- Oliver MJ, Dowd SE, Zaragoza J, Mauget SA, Payton PR (2004). The rehydration transcriptome of the desiccation-tolerant bryophyte *Tortula ruralis* : transcript classification and analysis. BMC Genomics, 5 (5): 1–19
- Saavedra L, Svensson J, Carballo V, Izmendi D, Welin B, Vidal S (2006). A dehydrin gene in *Physcomitrella patens* is required for salt and osmotic stress tolerance. Plant J, 45 (2): 237–249
- Sabovljevi M, Bijelovi A, Dragicevic I (2002). Effective and easy way of establishing in vitro culture of mosses, *Bryum argenteum hedw.* and *Bryum capillare hedw. Bryaceae*. Arch Biol Sci, 54 (1-2): 7–8
- Seo M, Koshiba T (2002). Complex regulation of ABA biosynthesis in plants. Trends Plant Sci, 7 (1): 41–48
- Shi Y, Zhao X, Jia R, Li XR (2012). The reactive oxygen species scavenging mechanism of *Bryum argenteum* and *Didymodon* vinealis in biological soil crusts under gradual drought stress. J Desert Res, 32 (3): 683–690 (in Chinese with English abstract) [石勇, 赵昕, 贾荣亮, 李新荣(2012). 逐渐干旱胁迫下生物土壤 结皮中真藓和土生对齿藓的活性氧清除机制. 中国沙漠, 32 (3): 683–690]
- Shinde S, Nurul I, Ng CKY (2012). Dehydration stress-induced oscillations in *LEA* protein transcripts involves abscisic acid in the moss, *Physcomitrella patens*. New Phytol, 195 (2): 321–328
- Shinde S, Shinde R, Downey F, Ng CKY (2013). Abiotic stress-induced oscillations in steady-state transcript levels of group 3 *LEA* protein genes in the moss, *Physcomitrella patens*. Plant Signal Behav, 8 (8): e22535
- Werner O, Espín RM. R Bopp M, Atzorn R (1991). Abscisic-acid-induced drought tolerance in *Funaria hygrometrica Hedw*. Planta, 186 (1): 99–103
- Wood AJ, Oliver MJ (1999). Translational control in plantstress: Formation of messenger ribonucleoprotein complexes (mRNPs) in *Tortula ruralis* in response to desiccation. Plant J, 18 (4): 359–370
- Wood AJ (2007). Invited essay: new frontiers in bryology and lichenology: the nature and distribution of vegetative desiccation-tolerance in hornworts, liverworts and mosses. Bryologist, 110 (2): 163–177
- Wu N, Zhang YM, Downing A, Zhang J, Yang CH (2012). Membrane stability of the desert moss *Syntrichia caninervis* mitt. during desiccation and rehydration. J Bryol, 34 (1): 1–8
- Zeevaart JAD, Creelman RAD, Zeevaart JAD, Creelman RA (1988). Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol, 39 (1): 439–473
- Zheng YP, Zhao JC, Zhang BC, Li L, Zhang YM (2009). Advances on ecological studies of algae and mosses in biological soil crust. Chin Bull Bot, 44 (3): 371–378 (in Chinese with English abstract) [郑云普, 赵建成, 张丙昌, 李琳, 张元明(2009). 荒 漠生物结皮中藻类和苔藓植物研究进展. 植物学报, 44 (3): 371–378]

Expression patterns of desiccation tolerance-associated genes of *Bryum argenteum* screened based on RNA-Seq data

LIANG Yu-Qing^{1,2}, LI Xiao-Shuang¹, GAO Bei³, YANG Hong-Lan¹, ZHANG Dao-Yuan^{1,*}, GUAN Kai-Yun¹

¹Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; ²University of Chinese Academy of Sciences, Beijing 100049, China; ³School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, HongKong 999077, China

Abstract: Based on our previous dehydration-rehydration transcriptome data of *Bryum argenteum*, nine desiccation tolerance associated genes were selected and their gene expression patterns under dehydration-rehydration, salt and ABA treatments were investigated using real-time quantitative PCR analysis. The main results were as follows: RT-qPCR results well validated the RNA-seq data, most of genes had similar gene expression trends compared with RNA-seq data under desiccation-rehydration treatment. Nine genes were induced by the dehydration-rehydration treatment at different degrees, and most of genes significantly highly induced at rehydration stage, and their abundance were reached maxima at 2 h, such as *ERF, Dehydrin* and *HSF3* genes. The eight out of nine genes were induced by both ABA and salt treatments, especially the relative expression levels of *ERF, DHN* and *LEA* genes were dramatically increased under ABA and salt stresses. In conclusion, genes like *ERF, DHN* and *LEA* were intensively induced by dehydration-rehydration, salt and ABA treatments, which should be potential stress-tolerant candidate genes for further gene cloning.

Key words: Bryum argenteum; desiccation tolerance; transcriptome; RT-qPCR; expression pattern

Received 2016-09-24 Accepted 2017-02-21

This work was supported by the General Project of the Xinjiang Uygur Autonomous Region Natural Science Foundation (Grant No. 2015211A047).

^{*}Corresponding author (E-mail: zhangdy@ms.xjb.ac.cn).