麻疯树 MIPS 基因启动子的分离及在烟草原生质体中瞬时表达活性分析

苟春宝,王勇,喻川,陈放,魏炜* 四川大学生命科学学院,生物资源与生态环境教育部重点实验室,成都610064

提要:根据麻疯树 MIPS基因序列,设计特异性的巢式引物,运用TAIL-PCR法两次步移得到 MIPS基因5'端侧翼序列,序列 分析显示含有多个胁迫应答相关元件,如 ABRE、HSE等。以该序列为基础, PCR扩增得到5个5'端不同长度的缺失片段, 分别插入 pBI221 载体置换 CaMV 35S 启动子,构建的表达载体在 PEG 介导下转入烟草叶片原生质体进行瞬时表达,检测 GUS 报告基因的活性。经 GUS 活性荧光定量检测发现,分离到的 MIPS基因侧翼序列 5'端不同缺失片段都能启动 GUS 报 告基因表达,启动活性最高的是 WQ1 区(-565 bp),核心区位于 -565~449 bp。在 100 µmol·L⁻¹ ABA 诱导下启动活性增强, 但不同区段的增长幅度不同。WQ1 区增长幅度最大,比未处理时提高41.4%。 关键词:麻疯树; MIPS基因;启动子;原生质体;瞬时表达

Isolation of *MIPS* Gene Promoter from *Jatropha curcas* L. and Activity Analysis of Transient Expression in Tobacco Protoplast

GOU Chun-Bao, WANG Yong, YU Chuan, CHEN Fang, WEI Wei*

Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China

Abstract: Using nested primers specific for the sequences of *Jatropha curcas MIPS* gene, the *MIPS* gene 5'-flanking sequences were obtained by TAIL-PCR. Some stress response elements were found by sequence analysis, such as ABA-responsive element (ABRE) and heat stress responsive element (HSE). Five different 5'-end deletion fragments of the *MIPS* gene 5'-flanking sequences were amplified by PCR, and they were inserted into the plant transient expression vector pBI221 to replace CaMV 35S promoter respectively. The expression vectors were transferred into tobacco leaf protoplasts by PEG-mediated transient expression and the different promoter activities were quantitatively estimated using *GUS* report gene. The results demonstrated that the isolated 5'-end different deletion fragments of *MIPS* gene could initiate *GUS* reporter gene expression in a tobacco leaf protoplast transient expression system. The GUS activity of WQ1 area (-565 bp) was the highest and the core area was located between -565 bp and -449 bp. The activity was increased by ABA (100 µmol·L⁻¹) treatment, but the increase in GUS activity of different segments was not the same. GUS activity was increased by 41.4% in WQ1 area, when compared with the control.

Key words: Jatropha curcas; MIPS gene; promoter; protoplast; transient expression

肌醇-1-磷酸合成酶(myo-inositol-1-phosphate synthase, MIPS)可催化 6-磷酸葡萄糖转化为肌醇-1-磷酸,是真核生物中肌醇生物合成的限速步骤 (Majumder 等 1997)。肌醇作为一种重要的渗透保 护物质不仅是植物细胞中磷元素的主要贮存形式, 而且在信号转导、保护植物免受外部逆境伤害、 激素贮存与运输等方面都起到重要作用。麻疯树 MIPS基因(JcMIPS)与麻疯树在逆境胁迫处理下的 抗性相关,其表达受到干旱、盐胁迫、低温以及 ABA诱导,但对不同逆境胁迫的响应程度有所不同, 表明JcMIPS基因的表达有其特殊的调控机制(魏炜 等未发表资料)。至今已有 60 多个来自不同物种的*MIPS*同源基因序列得到了分离和鉴定(Majumder 等2003),但对*MIPS*基因启动子结构与功能的研究鲜有报道。因此,分离 *JcMIPS*基因的启动子,寻找调控 *JcMIPS*基因表达的关键元件,分析其对*JcMIPS*基因表达的调控机制具有重要意义。

收稿 2010-01-19 修定 2010-06-18

资助 "十一五"科技支撑项目(2006BAD07A04)和四川省"十 一五"支撑项目(2007BAD50B00)。

^{*} 通讯作者(E-mail: wwxfbxw@gmail.com; Tel: 028-85410672)。

本文根据 JcMIPS 基因序列(GenBank 登录号 EF185781),设计特异性的巢式引物,与5个随机兼 并引物组合,采用 TAIL-PCR 法两次步移获得了 JcMIPS 基因的启动子序列。以此全长序列为基 础, PCR 扩增得到5个5'端不同缺失片段,再分别 插入 pB1221 载体置换其原有的花椰菜花叶病毒 (cauliflower mosaic virus, CaMV) 35S 启动子,在 PEG 介导下将重组表达载体转入烟草叶片原生质 体中瞬时表达,检测 GUS 报告基因的活性,从而验 证 JcMIPS 启动子活性,分析该启动子的核心功能 元件,了解 JcMIPS 基因抗性调节的相关机理。

材料与方法

麻疯树(Jatropha curcas L.)种子(采自四川省西 昌地区)在含蛭石的营养钵中培养,待长出真叶后用 于 DNA 提取。烟草(Nicotiana tabacum, 品系为 NC98)无菌苗由本实验室保存并繁殖。表达载体 pBI221 及大肠杆菌 TOP10 菌株,由本实验室保存。 pMD19-T 载体、内切酶 Pst1 和 XbaI、T4 连接酶、 Taq DNA 聚合酶及相应的反应缓冲液、dNTPs 均 购于日本 TaKaRa (中国大连)公司; DNA 凝胶回收 试剂盒购自北京 TIANGEN 生物公司。

根据JcMIPS序列,在开放阅读框内靠近ATG 处设计3个特异性的巢式引物JcSP1、JcSP2和 JcSP3, 再参照 Liu 等(1995, 1998)方法设计 5 个随 机简并引物 AD1~AD5 (表 1)。用 CTAB 法提取麻 疯树叶片基因组DNA作为模板,3个特异性巢式引 物与5个随机简并引物组合进行 TAIL-PCR 扩增, 反应程序见表2。1%琼脂糖凝胶电泳检测扩增产 物大小。TAIL-PCR 扩增获得的特异片段用 DNA 凝胶回收试剂盒回收后,与pMD19-T载体连接,转 化大肠杆菌 TOP10 感受态细胞,涂铺于LB (Amp⁺) 平板。菌落 PCR 鉴定的阳性克隆送 Invitrogen (上 海)公司测序。根据测序所得序列,在其5'端再设 计3个特异性的巢式引物JS1、JS2和JS3,与5个 随机简并引物 AD1~AD5 组合, 以麻疯树叶片基因 组 DNA 为模板,进行 TAIL-PCR 扩增。扩增产物 的电泳检测、胶回收及测序同上所述。将两次步 移获得的序列进行拼接,得到 JcMIPS 启动子全长 序列。使用 PlantCARE (http://bioinformatics.psb. ugent.be/webtools/plantcare/html/)工具, 在线分析 JcMIPS 启动子序列特征。

表1 PCR 反应所用到的引物

Table 1 Primers for PCR reactions

引物	序列
JcSP1	5' TAACCCCAGCGGTGAGAGTAGAAC 3'
JcSP2	5' TACATGGATATCAGTCCTAAATTCG 3'
JcSP3	5' CACAGAGTGAATCTCATCATCCG 3'
JS1	5' GTAGTGGAAATGTTGGTGACAGTGA 3'
JS2	5' GAGGGTGAAATGATTGACTGAGGA 3'
JS3	5' GCGAGTAAAGGTGCGTGGAATA 3'
AD1	5' NTCGA(G/C)T(A/T)T(G/C)G(A/T)GTT 3'
AD2	5' NGTCGA(G/C)(A/T)GANA(A/T)GAA 3'
AD3	5' (A/T)GTGNAG(A/T)ANCANAGA 3'
AD4	5' TG(A/T)GNAG(A/T)ANCA(G/C)AGA 3'
AD5	5' AG(A/T)GNAG(A/T)ANCA(A/T)AGG 3'
WQ1F	5' AA <u>CTGCAG</u> TTACCCTCGTCGTGGAT 3'
QS1F	5' AA <u>CTGCAG</u> CATTTCACCCTCTCCA 3'
QS2F	5' AA <u>CTGCA</u> GCAATCAAAACAAAAC 3'
QS3F	5' AA <u>CTGCA</u> GCCTACCTATTTTACAC 3'
WQ2F	5' AA <u>CTGCAG</u> CAAAGTGTGTGGCAAA 3'
R	5' GC <u>TCTAGA</u> TTTTCTTTAAAATGCGA 3'

以 *JcMIPS* 启动子全长序列为基础,设计不同 的上游引物(有*Pst*I酶切位点),与下游引物(有*Xba*I 酶切位点)组合,以麻疯树叶片基因组DNA为模板, PCR 扩增 *JcMIPS* 启动子 5' 端不同的缺失片段: WQ1、QS1、QS2、QS3、WQ2。PCR 反应程 序为:95 ℃ 5 min; 95 ℃ 30 s, 55 ℃ 40 s, 72 ℃ 1 min (循环 30 次); 72 ℃ 5 min。扩增产物的电泳检测、 胶回收及测序同上所述。

用限制性内切酶 PstI和 XbaI分别双酶切载体 pBI221和 JcMIPS 启动子 5'端不同的缺失片段。胶 回收 pBI221载体大片段和 JcMIPS 启动子 5'端不同 的缺失片段,用 T4 连接酶连接后转化大肠杆菌 TOP10 感受态细胞,涂铺于 LB (Amp⁺)平板。菌 落 PCR 鉴定阳性克隆,提取质粒进行双酶切鉴定, 以获得 5 个重组表达载体: pBWQ1、pBQS1、 pBQS2、pBQS3、pBWQ2。这样就将 pBI221上 的 CaMV 35S 启动子替换为 JcMIPS 启动子,以分 析其驱动 GUS 报告基因表达的活性。

烟草叶片原生质体的制备参照文献(Negrutiu 等 1987; 印莉萍和祁小廷 2005)。酶解液的组成 为: 1% (*W/V*)纤维素酶 R-10、0.5% (*W/V*)离析酶 R-10、10 mmol·L⁻¹ CaCl₂·2H₂O、0.7 mmol·L⁻¹ NaH₂PO₄·2H₂O、0.5 mol·L⁻¹ 甘露醇、5 mmol·L⁻¹ 无水吗啉乙磺酸(MES), 用 1 mol·L⁻¹ KOH 调 pH 至

反应	程序编码	循环数	参数
第1次	1	1	92 °C, 3 min; 95 °C, 1 min
	2	5	94 °C, 30 s; 62 °C, 1 min; 72 °C, 2 min
	3	1	94 ℃, 30 s; 25 ℃, 3 min; 在 3 min 内升到 72 ℃; 72 ℃, 2 min
	4	15	94 °C, 30 s; 62 °C, 1 min; 72 °C, 2 min; 94 °C, 30 s; 62 °C, 1 min; 72 °C,
			2 min; 94 °C, 30 s; 44 °C, 1 min; 72 °C, 2 min
	5	1	72 °C, 5 min
第2和第3次	6	1	95 °C, 5 min
	7	12	94 °C, 30 s; 60 °C, 1 min; 72 °C, 2 min; 94 °C, 30 s; 60 °C, 1 min; 72 °C,
			2 min; 94 °C, 30 s; 44 °C, 1 min; 72 °C, 2 min
	5	1	72 °C, 5 min

表2 克隆 JcMIPS 基因启动子序列的 TAIL-PCR 反应参数	[
-------------------------------------	---

Table 2 The parameters of TAIL-PCR used to amplify the promoter of JcMIPS gene

5.6。原生质体计数参考侯岁稳和贾敬芬(2002)的 方法。用荧光素双醋酸盐(FDA)对原生质体染色, 鉴别其活力。

质粒 pBI221 (阳性对照)、5 个重组质粒在 40% (*W/V*) PEG4000 介导下转入烟草叶片原生质 体,转化过程及转化后原生质体的悬浮培养参照文 献(Negrutiu 等 1987; 印莉萍和祁小廷 2005)进行。 需ABA处理的原生质体,待转化后原生质体预培养 2 h,再加入ABA (终浓度为100 µmol·L⁻¹)诱导培养过 夜。参照印莉萍和祁小廷(2005)方法回收培养过夜 的原生质体,提取 GUS 粗酶液进行荧光定量检测。 用 Bradford 法测定粗酶提取液蛋白含量。以 pmol (4-MU)·mg⁻¹(蛋白)·min⁻¹ 为单位计算酶活性。

实验结果

1 麻疯树总 DNA 的质量分析

经测定, CTAB 法提取的麻疯树叶片总 DNA, OD₂₆₀/OD₂₈₀接近1.8, 说明提取的麻疯树总 DNA质 量好, 可作为 PCR 模板。

2 TAIL-PCR法扩增JcMIPS启动子序列

第1次步移进行3轮PCR扩增后, JcSP3与AD2 引物组合三扩有较亮的条带(图1), 回收并测序后获 得长 566 bp 的序列。第2次步移, JS3 与 AD5 引 物组合三扩有较亮的条带(图2), 回收并测序后获得 长 792 bp 的序列。

3 JcMIPS 启动子全长序列的获得与分析

将两次步移获得的序列拼接后(去除中间重叠 部分),获得了翻译起始密码子 ATG (将 ATG 中的 A 定义为 +1 位)上游 1 265 bp 的 *JcMIPS* 启动子序

图1 第1次步移 TAIL-PCR 扩增结果

列(图 3)。使用 PlantCARE 在线分析(http:// bioinformatics.psb.ugent.be/webtools/plantcare/ html/),观测到 JcMIPS 启动子包含核心启动子元件 (core promoter element)及特异顺式作用元件。通 过网站(http://www.fruitfly.org/seq_tools/promoter. html)在线分析,推测位于-136 bp处的腺嘌呤 A为 JcMIPS 启动子转录起始位点。研究表明,高等植 物的启动子具有一些保守的功能元件(例如TATA-

-1 265	САЛАGTGTGTGGCЛАЛАЛАТАЛАЛТАЛАЛТАЛАТАТТТАЛАТАТСАЛАТТТ
-1 215	CTTTTATCATGATATTCTTTATTTGATGGGAAAGCAAAATTTCAGTGCAT
-1 165	GTAAATACTCTTTTTGTAGTGAAAACATAAAATATGTGTTTGAATTTCTT
-1 115	${\tt TCTTAATTTTTATATAAATTGCAAATTCTTTGTTTGGATTGAGGAAGGA$
-1 065	${\tt GTAAAATAGTGGAGTATTATTCACTTTGCCTCTTTATTTTATACTTACT$
-1 015	${\tt TTTGGATTGAAGGGAAAATAAAATGAAGGGGTAAAATAAATTTATTTTAC$
-965	TTTATTTGCACCTTTGCTGTTTTATTTTTCTACCATTCTGTGAGTAAATT
-915	GAAGGTAAAAAAATAAAGACTGTTCACATCCAATCACTTTTTTATCTTGT
-865	${\tt TTCCGAATAAGGTAATTTTTCGAAAGAATTTTCACTTCGTTATTTTATAT$
-815	$TCCTACCTATTTTACACCAAACCAAACCAGCTGAAAGTGTCAATTT\underline{\mathsf{TAAC}$
-765	$\underline{\mathbf{TG}} AATGAAAATACTACTAAATAGTTATACTGAGGGGTAAAAACGAAAAGTA$
-715	AATTTAAGTTTCGCAGTAAAAAGGAGAAAGCAATCAAAAACAAAACGAACA
-665	$\Lambda\Lambda\Lambda TCAGCAACAA\underline{AACAAATTTC}GACGTGCACTTGGAAATAGTTGAAACG$
-615	${\tt GT}\underline{{\tt CCACCCCGGA}}{\tt AGGTCGATAGCAGTTGAGCAAACTCCATCCCCACGCCT}$
-565	TTACCCTCGTCGTGGATCACACTTTCATAGAAAACCCAAAAATCCTTAACT
-515	${\tt AGTGTATTCCACGCACCTTTACTCGCGCAAACAAATCGGTCCCACCGAA\underline{G}$
-465	$\underline{CAATTCC} TCAGTCAATCATTTCACCCTCT \underline{CCAAAAATTTC} ACGAGTCACT$
-415	GTCACCAACATTTCCACTACCTTCTTAGATTTTGGATCCCACATATCAAA
-365	$CAAAGCTAAGGAATAAAATACTACAAAGGACTCACAGGAT\underline{CAAGCCA}CGC$
-315	${\tt GTAAAGTGCA} \underline{{\tt GCCACT}} {\tt TGTCACACTTAATCTCT} \underline{{\tt CACGTG}} {\tt TCAATCGG} \underline{{\tt TAC}}$
-265	<u>GTG</u> CGGTCCAATATTTGCATGGCCAAGCTTCGCTGTGGACCAAAACGCCA
-215	${\bf AT} {\bf AG} {\bf T} {\bf AC} {\bf C} {\bf AA} {\bf AG} {\bf G} {\bf AA} {\bf G} {\bf G} {\bf G} {\bf G} {\bf C} {\bf AC} {\bf C} {\bf $
-165	AATATATGGCCACACACTTCCCTCTATTTATCACCTCTTTAGCTGCGTT
-115	TGAGAGAGCACGAAGGCCTGAGATTGAAAGCAAATTGCAGTTTTCTTCTT
-65	CTTTTCTTATTTTGTGGCTTCTTTGCTTGCAATCTCGGTTCAGTTTCTC
-15	GCATTTTAAAGAAAAATGTTTATTGAGAAGTTTAAGGTCGAGAGTCCTAA
	+1

图 3 JcMIPS 的启动子序列

Fig.3 Nucleotide sequences of JcMIPS promoter

JcMIPS 启动子的顺式调控元件用下划线表示; CAAT 盒、TATA 盒、翻译起始位点用阴影显示; 转录起始位点加框显示。

box 和 CAAT-box), 能够调控基因的转录。TATAbox与双链的解链有关, 是RNA聚合酶转录起始的 必要条件。在*JcMIPS*启动子中位于翻译起始位点 ATG上游-166~-160 bp处, 找到了具有典型TATAbox 特点的序列结构(TATA[A/T]A[A/T])。另一个 在真核生物中常见的保守元件 CAAT-box 与 RNA 聚合酶的结合有关, 主要控制着转录起始的频率, 其 保守序列为 GC[C/T]CAATCT。在 *JcMIPS* 启动子 中 -217~-214 bp 处存在类似结构, 且这两个保守 盒之间的距离为 40~80 bp, 比较符合文献报道(李 杰等 2006)中两者的通常距离。此外, 该序列还存 在多个胁迫应答元件(表 3),如与ABA诱导相关的 元件(ABA-responsive element, ABRE)、热激应答 元件(heat stress responsive element, HSE)、MYB 结合位点(MYB binding site, MBS)、光信号应答元 件 G-box 和 Sp1、发育相关元件 GCN4_motif (胚 乳)和 CAT-box (分生组织)。魏炜等(未发表资料) 研究表明, JcMIPS 基因的表达受到干旱、盐胁 迫、低温以及 ABA 诱导,且对不同逆境胁迫的响 应程度有所不同。这些胁迫应答元件的存在,与 JcMIPS基因应答于多种胁迫的特点相一致,表明本 文克隆的JcMIPS启动子可能是一个与逆境胁迫相

表3 JcMIPS 启动子的顺式作用元件

Table 3 cis-Elements in the JcMIPS promoter

功能	保守元件	位点
ABA 应答元件	YACGTG	-282~-277, -268~-263, -173~-168
光调控应答元件	ACGTG	-282~-277, -268~-263, -175~-167, -173~-168
	CCRCCC	-613~-604
MYB 结合位点	TAACTG	-769~-764
热激应答元件	AAAAAATTTC	-652~-643, -436~-426
发育相关元件(胚乳、分生组织)	CAAGCCA	-325~-319
	GCCACT	-305~-300
AT 富集区	ТААААТАСТ	-344~-352

Y=C/T; R=A/G.

关的启动子。

4 JcMIPS 启动子 5' 端不同缺失片段的扩增

通过PCR成功扩增了5个JcMIPS启动子不同 长度的5'端缺失片段(图4):WQ1(-565 bp)、QS1 (-449 bp)、QS2(-685 bp)、QS3(-814 bp)和 WQ2(-1265 bp)。5个缺失片段分别回收后,测 序结果表明它们都是JcMIPS启动子全长的一部 分。

5 JcMIPS 启动子驱动 GUS 表达的瞬时表达载体构建

重组质粒通过PCR (图5)及双酶切鉴定(图6), 表明瞬时表达载体构建成功。

6 烟草叶片原生质体的制备与活性分析

显微镜下观察制备的烟草叶片原生质体及其 FDA 活性染色的结果见图 7。原生质体因细胞壁 酶解后,呈圆球形,边缘部分有绿色的叶绿体,中间

图 4 JcMIPS 启动子 5' 端不同缺失片段 Fig.4 5'-end different deletion fragments of the JcMIPS promoter

图 7 烟草叶片原生质体(A)及其 FDA 染色(B) Fig.7 The protoplasts from tobacco leaves (A) and FDA staining (B)

透明部分为大液泡,其余杂质主要是破碎的原生质体和降解的细胞壁和胞间组织。FDA染色结果表明,90%以上的原生质体有活性,可将穿过原生质膜进入原生质体的FDA分解产生荧光素,在倒置荧光显微镜下原生质体发出绿色荧光。

7 GUS活性荧光定量检测

GUS活性荧光定量检测结果(图8)表明, JcMIPS 启动子在烟草叶片原生质体中能启动GUS报告基 因表达,但启动子各区段的活性不同。QS1区活性 较强,WQ1区活性最强,比正对照pBI221的CaMV 35S启动子高出19.2%;QS2区、QS3区、WQ2 区3个区段活性差异不显著。用100 µmol·L⁻¹ABA 处理后, JcMIPS启动子活性增强,但不同区段的增 长幅度不同。WQ1区增长幅度最大,比未处理时 增高41.4%。正对照pBI221的CaMV 35S启动子

Fig.8 Fluorescence quantitative detection of GUS activity

活性在 ABA 处理后没有显著差异。

从JcMIPS 启动子的序列特征来看,由于主要的胁迫应答元件均存在于 WQ1 区附近,距离转录起始位点A和翻译起始密码子ATG较近,对基因的表达调控起关键作用,故这个区段的活性最强;随着 5'端序列的延伸,活性不断降低,可能是由于存在减弱转录的负调控元件引起的。JcMIPS 启动子各区段都存在的ABRE元件可以积极应答ABA的诱导,从而提高了 GUS 报告基因的表达水平。

讨 论

植物基因启动子的克隆通常有两条途径(尹辉 等2006): 一是构建基因组文库, 通过杂交来筛选目 的启动子; 二是通过接头连接 PCR 或反向 PCR 扩 增目的启动子。但这两种方法都比较复杂, 使用 TAIL-PCR 方法具有简便、快速、高效、特异性 强等特点, 通常可以扩增到 0.2~2 kb 的片段(Liu 和 Huang 1998)。

植物原生质体的遗传转化研究在20世纪80年 代以后才逐渐开展起来,最常见的是PEG介导转化 法。这种方法不需特殊设备,操作简便易行,便于 采用。本文中用 40% (W/V) PEG4000 介导瞬时表 达载体转化烟草叶片原生质体。在加入 PEG 时, 应从管底缓慢加入,然后立即轻柔混匀,避免原生 质体结团,从而获得较高的转化效率。

影响瞬时表达的因素有宿主细胞的类型、生 理状态、所用报告基因的种类等。烟草叶片原生 质体作为瞬时表达的良好受体材料,已经得到广泛 应用。GUS 报告基因在高等植物中特别有用,因为在大多数种类的植物中都不含内源性的GUS活性,且检测方法方便、灵敏。本文中采用荧光分析法检测GUS 活性,从而分析 JcMIPS 启动子的活性。由于瞬时表达有一定的随机性,本文的结论是几个独立转化实验数据的综合分析。

由于启动子存在不同的顺式作用元件,因而其 调控方式不同:有的是组织特异型启动子,如种子 特异性启动子中存在 B-box 元件、RY 重复序列 (Ellerstrom 等 1996; Ezcurra 等 1999; Kao 等 1996); 有的是诱导型启动子,如热诱导表达启动子中存在 HSE元件(Rrandl和Schoffl 1996), 生长素诱导的启 动子含有G盒结构或TGA (Hex)盒(Nagao等 1993)。通过对 JcMIPS 启动子的序列进行分析, 我 们找到了多个胁迫应答元件,并结合已知的JcMIPS 基因自身的表达特点,推断所分离的 JcMIPS 启动 子是一种胁迫诱导型启动子。烟草原生质体中的 瞬时表达证明JcMIPS启动子可驱动GUS报告基因 表达,且在ABA 诱导下其活性增强。在启动子的 序列中, 一般核心区对基因的表达调控起关键作 用。通过对 JcMIPS 启动子 5' 端不同缺失片段驱 动报告基因表达的活性分析,我们发现各区段的活 性不同,并找到了其核心区位于-565~-449 bp。在 后续实验中,还将通过农杆菌介导的拟南芥转化技 术,进行稳定表达以进一步确定 JcMIPS 启动子的 特性。

参考文献

- 侯岁稳, 贾敬芬(2002). 一种简易的植物原生质体计数方法. 植物 生理学通讯, 38 (1): 57
- 李杰, 张福城, 王文泉, 黄丽云(2006). 高等植物启动子的研究进 展. 生物技术通讯, 17 (4): 658~661

- 尹辉,李丹,张毅,李秋莉(2006). 植物基因启动子的克隆方法及 应用. 分子植物育种, 4 (3S): 85~91
- 印莉萍, 祁小廷(2005). 细胞分子生物学技术教程. 第2版. 北京: 科学出版社, 250~251
- Ellerstrom M, Stalberg K, Ezcurra I, Rask L (1996). Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription. Plant Mol Biol, 32: 1019~1027
- Ezcurra I, Ellerstrom M, Wycliffe P, Stalberg K, Rask L (1999). Interaction between composite elements in the *napA* promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol Biol, 40: 699~709
- Kao CY, Cocciolone SM, Vasil IK, McCarty DR (1996). Localization and interaction of the *cis*-acting elements for abscisic acid, VIVIPAROUS1, and light activation of the *C1* gene of maize. Plant Cell, 8: 1171~1179
- Liu YG, Huang N (1998). Efficient amplification of insert end sequences from bacterial artificial chromosome clones by thermal asymmetric interlaced PCR. Plant Mol Biol Rep, 16: 175~181
- Liu YG, Whittier RF (1995). Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 25: 674~681
- Majumder AL, Chatterjee A, Dastidar KG, Majee M (2003). Diversification and evolution of L-*myo*-inositol-1-phosphate synthase. FEBS Lett, 553: 3~10
- Majumder AL, Johnson MD, Henry SA (1997). 1L-myo-inositol-1-phosphate synthase. Biochem Biophys Acta, 1348: 245~256
- Nagao RT, Goekjian VH, Hong JC, Key JL (1993). Identification of protein-binding DNA sequences in an auxin-regulated gene of soybean. Plant Mol Biol, 21: 1147~1162
- Negrutiu I, Shillito R, Potrykus I, Biasini G, Sala F (1987). Hybrid genes in the analysis of transformation conditions. I. Setting up a simple method for direct gene transfer in plant protoplasts. Plant Mol Biol, 8: 363~373
- Rrandl R, Schoffl F (1996). Heat shock elements are involved in heat shock promoter activation during tobacco seed maturation. Plant Mol Biol, 31: 157~162